Abstract

This experimental and numerical investigation is intended to increase heat transfer, reduce pumping power, and present important guidelines on the use of confined submerged air jet impingement in solar air heater designs that employ an array of circular air jets for high thermohydraulic performance. In order to increase thermohydraulic performance, a novel approach is adopted, i.e., by improving jet stability and consequently jet deflection that gives origination to four solar air heater designs for this investigation. The obtained numerical results revealed that thermohydraulic performance improves significantly by stabilizing the air jet array, which means lowering the jet deflection. The thermohydraulic performance of design-I is high compared to design-II, design-III, and design-IV, both at equal mass flow rate and Reynolds number. Moreover, design-I presents 20%, 33%, and 52% relative improvement in deviation angle of the jet core compared to design-II, design-III, and design-IV, respectively, at a minimum mass flow rate of 0.01 kg/s and Reynolds number of Re=2000, respectively. In addition, correlations to define heat transfer and fluid dynamics characteristics are established. An important guideline upon the use of solar air heater with jet impingement is that a solar air heater of short length and height (jet and plate spacing), and large width should be used for high thermohydraulic performance.

References

1.
Chamarthi
,
S.
, and
Singh
,
S.
,
2021
, “
A Comprehensive Review of Experimental Investigation Procedures and Thermal Performance Enhancement Techniques of Solar Air Heaters
,”
Int. J. Energy Res.
,
45
(
4
), pp.
5098
5164
.10.1002/er.6255
2.
Singh
,
S.
,
2018
, “
Thermal Performance Analysis of Semicircular and Triangular Cross-Sectioned Duct Solar Air Heaters Under External Recycle
,”
J. Energy Storage
,
20
, pp.
316
336
.10.1016/j.est.2018.10.003
3.
Singh
,
S.
, and
Dhiman
,
P.
,
2014
, “
Thermal and Thermohydraulic Performance Evaluation of a Novel Type Double Pass Packed Bed Solar Air Heater Under External Recycle Using an Analytical and RSM (Response Surface Methodology) Combined Approach
,”
Energy
,
72
, pp.
344
359
.10.1016/j.energy.2014.05.044
4.
Singh
,
S.
, and
Dhiman
,
P.
,
2016
, “
Thermal Performance Analysis of a Rectangular Longitudinal Finned Solar Air Heater With Semicircular Absorber Plate
,”
ASME J. Sol. Energy Eng.-Trans. ASME
,
138
(
1
), p.
011006
.10.1115/1.4032010
5.
Ho
,
C.-D.
,
Chang
,
H.
,
Wang
,
R.-C.
, and
Lin
,
C.-S.
,
2012
, “
Performance Improvement of a Double-Pass Solar Air Heater With Fins and Baffles Under Recycling Operation
,”
Appl. Energy
,
100
, pp.
155
163
.10.1016/j.apenergy.2012.03.065
6.
Hassan
,
H.
,
Abo-Elfadl
,
S.
, and
El-Dosoky
,
M.
,
2020
, “
An Experimental Investigation of the Performance of New Design of Solar Air Heater (Tubular)
,”
Renewable Energy
,
151
, pp.
1055
1066
.10.1016/j.renene.2019.11.112
7.
Hegazy
,
A. A.
,
2000
, “
Thermohydraulic Performance of Air Heating Solar Collectors With Variable Width, Flat Absorber Plates
,”
Energy Conver. Manage.
,
41
(
13
), pp.
1361
1378
.10.1016/S0196-8904(99)00190-9
8.
Abdullah
,
A.
,
Abou Al-sood
,
M.
,
Omara
,
Z.
,
Bek
,
M.
, and
Kabeel
,
A.
,
2018
, “
Performance Evaluation of a New Counter Flow Double Pass Solar Air Heater With Turbulators
,”
Sol. Energy
,
173
, pp.
398
406
.10.1016/j.solener.2018.07.073
9.
Singh
,
S.
, and
Dhiman
,
P.
,
2016
, “
Double Duct Packed Bed Solar Air Heater Under Combined Single and Recyclic Double Air Pass
,”
ASME J. Sol. Energy Eng.-Trans. ASME
,
138
(
1
), p.
011009
.10.1115/1.4032142
10.
Singh
,
S.
,
Chaurasiya
,
S. K.
,
Negi
,
B. S.
,
Chander
,
S.
,
Nemś
,
M.
, and
Negi
,
S.
,
2020
, “
Utilizing Circular Jet Impingement to Enhance Thermal Performance of Solar Air Heater
,”
Renewable Energy
,
154
, pp.
1327
1345
.10.1016/j.renene.2020.03.095
11.
Chu
,
W.-X.
,
Huang
,
K.-C.
,
Amer
,
M.
, and
Wang
,
C.-C.
,
2019
, “
Experimental and Numerical Investigations on Jet Impingement Cooling for Electronic Modules
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
10
), p.
102201
.10.1115/1.4044149
12.
Shen
,
Z.
,
Jing
,
Q.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2017
, “
Thermal Performance of Mini Scale Heat Sink With Jet Impingement and Dimple/Protrusion Structure
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
5
), p.
052202
.10.1115/1.4036035
13.
Fang
,
C. J.
,
Lee
,
C. Y.
,
Peng
,
C. H.
,
Lin
,
T. W.
, and
Hung
,
Y. H.
,
2007
, “
Fluid Flow Behavior for a Confined Rotating MCM Disk With Round Jet Array Impingement
,”
ASME
Paper No. IPACK2007-33278.10.1115/IPACK2007-33278
14.
Shevade
,
S. S.
,
Rahman
,
M. M.
, and
Guldiken
,
R. O.
,
2018
, “
Turbulent Multi-Jet Air Impingement for Applications in Commercial Cooking
,”
ASME
Paper No. IMECE2018-88635.10.1115/IMECE2018-88635
15.
Florschuetz
,
L. W.
, and
Su
,
C. C.
,
1987
, “
Effects of Crossflow Temperature on Heat Transfer Within an Array of Impinging Jets
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
1
), pp.
74
82
.10.1115/1.3248072
16.
Tepe
,
A. Ü.
,
Arslan
,
K.
,
Yetişken
,
Y.
, and
Uysal
,
Ü.
,
2019
, “
Effects of Extended Jet Holes to Heat Transfer and Flow Characteristics of the Jet Impingement Cooling
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
8
), p.
082202
.10.1115/1.4043893
17.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer-Trans. ASME
,
103
(
2
), pp.
337
342
.10.1115/1.3244463
18.
Sakhuja
,
R. K.
,
1980
, “
Jet Impingement Solar Collector
,” Google Patents, U.S. Patent 4,201,195.
19.
Doherty
,
P. M.
,
2008
, “
Solar Air Heater
,” Google Patents, U.S. Patent 7434577B2.
20.
Choudhury
,
C.
, and
Garg
,
H.
,
1991
, “
Evaluation of a Jet Plate Solar Air Heater
,”
Sol. Energy
,
46
(
4
), pp.
199
209
.10.1016/0038-092X(91)90064-4
21.
Brideau
,
S. A.
, and
Collins
,
M. R.
,
2014
, “
Development and Validation of a Hybrid PV/Thermal Air Based Collector Model With Impinging Jets
,”
Sol. Energy
,
102
, pp.
234
246
.10.1016/j.solener.2014.01.022
22.
Chauhan
,
R.
, and
Thakur
,
N.
,
2014
, “
Investigation of the Thermohydraulic Performance of Impinging Jet Solar Air Heater
,”
Energy
,
68
, pp.
255
261
.10.1016/j.energy.2014.02.059
23.
Nayak
,
R.
, and
Singh
,
S.
,
2016
, “
Effect of Geometrical Aspects on the Performance of Jet Plate Solar Air Heater
,”
Sol. Energy
,
137
, pp.
434
440
.10.1016/j.solener.2016.08.024
24.
Nadda
,
R.
,
Kumar
,
A.
, and
Maithani
,
R.
,
2017
, “
Developing Heat Transfer and Friction Loss in an Impingement Jets Solar Air Heater With Multiple Arc Protrusion Obstacles
,”
Sol. Energy
,
158
, pp.
117
131
.10.1016/j.solener.2017.09.042
25.
Aboghrara
,
A. M.
,
Baharudin
,
B.
,
Alghoul
,
M.
,
Adam
,
N. M.
,
Hairuddin
,
A.
, and
Hasan
,
H. A.
,
2017
, “
Performance Analysis of Solar Air Heater With Jet Impingement on Corrugated Absorber Plate
,”
Case Stud. Thermal Eng.
,
10
, pp.
111
120
.10.1016/j.csite.2017.04.002
26.
Singh
,
S.
,
Singh
,
A.
, and
Chander
,
S.
,
2019
, “
Thermal Performance of a Fully Developed Serpentine Wavy Channel Solar Air Heater
,”
J. Energy Storage
,
25
, p.
100896
.10.1016/j.est.2019.100896
27.
ASHRAE,
1977
, “
Method of Testing of Determines Thermal Performance of Solar Collector
,” ASHRAE, New York, Standard No.
93
77
.
28.
ANSYS,
2019
, “
ANSYS FLUENT 12.0, 2003-04, Documentation (Theory Guide)
,”
ANSYS
, Canonsburg, PA.
29.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2016
, “
Performance Improvement of Savonius Rotor Using Multiple Quarter Blades–A CFD Investigation
,”
Energy Convers. Manage.
,
127
, pp.
43
54
.10.1016/j.enconman.2016.08.087
30.
Shukla
,
I.
,
Tupkari
,
S. S.
,
Raman
,
A. K.
, and
Mullick
,
A.
,
2012
, “
Wall Y+ Approach for Dealing With Turbulent Flow Through a Constant Area Duct
,”
AIP Conference Proceedings
, 1440(1), pp.
144
153
.10.1063/1.4704213
31.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
, 7th ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.