Abstract
The evaporation of a liquid drop of initial diameter (Ddrop) migrating in a tube of diameter (D0) is investigated using the coupled level set and volume of fluid method focusing on determining the heat and mass transfer coefficients for a deforming drop. A robust phase change model is developed using an embedded boundary method under a finite difference framework to handle vaporizing flows. The model is extensively validated through simulations of benchmark problems such as arbitrary evaporation of a static drop and reproduction of psychrometric data. The results show that the Sherwood number and the Nusselt number reach a steady value after an initial transient period for the drop subjected to Hagen-Poiseuille flow. A parametric study is conducted to investigate the effect of drop deformation on the rate of evaporation. It is observed that Stefan flow due to evaporation has a negligible impact on the drop deformation dynamics. We also observed that, for different values of , the Sherwood number follows a linear correlation with .