Abstract

The evaporation of a liquid drop of initial diameter (Ddrop) migrating in a tube of diameter (D0) is investigated using the coupled level set and volume of fluid method focusing on determining the heat and mass transfer coefficients for a deforming drop. A robust phase change model is developed using an embedded boundary method under a finite difference framework to handle vaporizing flows. The model is extensively validated through simulations of benchmark problems such as arbitrary evaporation of a static drop and reproduction of psychrometric data. The results show that the Sherwood number and the Nusselt number reach a steady value after an initial transient period for the drop subjected to Hagen-Poiseuille flow. A parametric study is conducted to investigate the effect of drop deformation on the rate of evaporation. It is observed that Stefan flow due to evaporation has a negligible impact on the drop deformation dynamics. We also observed that, for different values of Ddrop/D0, the Sherwood number follows a linear correlation with Re1/2Sc1/3.

References

1.
Dugas
,
V.
,
Broutin
,
J.
, and
Souteyrand
,
E.
,
2005
, “
Droplet Evaporation Study Applied to DNA Chip Manufacturing
,”
Langmuir
,
21
(
20
), pp.
9130
9136
.10.1021/la050764y
2.
Sazhin
,
S. S.
,
2006
, “
Advanced Models of Fuel Droplet Heating and Evaporation
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
162
214
.10.1016/j.pecs.2005.11.001
3.
Pruppacher
,
H. R.
,
Klett
,
J. D.
, and
Wang
,
P. K.
,
1998
,
Microphysics of Clouds and Precipitation
, Vol.
2
,
Taylor and Francis
, Boston, MA.
4.
Tripathi
,
M. K.
, and
Sahu
,
K. C.
,
2015
, “
Evaporating Falling Drop
,”
Proc. IUTAM
,
15
, pp.
201
206
.10.1016/j.piutam.2015.04.028
5.
Ayyaswamy
,
P. S.
,
1995
, “
Direct-Contact Transfer Processes With Moving Liquid Droplets
,”
Advances in Heat Transfer
, Vol.
26
,
Elsevier
, New York, pp.
1
104
.
6.
Ayyaswamy
,
P. S.
,
1996
, “
Mathematical Methods in Direct-Contact Transfer Studies With Droplets
,”
Annu. Rev. Heat Transfer
,
7
, pp.
245
331
.
7.
Spalding
,
D. B.
,
1955
,
Some Fundamentals of Combustion
, Vol.
2
,
Academic Press
, MI.
8.
Rantz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops
,”
Chem. Eng. Prog.
,
48
, pp.
141
146
.https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=2323150
9.
Huang
,
L. J.
, and
Ayyaswamy
,
P. S.
,
1990
, “
Evaporation of a Moving Liquid Drop: Solutions for Intermediate Reynolds Numbers
,”
Int. Commun. Heat Mass Transfer
,
17
(
1
), pp.
27
38
.10.1016/0735-1933(90)90076-V
10.
Jog
,
M. A.
,
Ayyaswamy
,
P. S.
, and
Cohen
,
I. M.
,
1996
, “
Evaporation and Combustion of a Slowly Moving Liquid Droplet: Higher Order Theory
,”
J. Fluid Mech.
,
307
, pp.
135
165
.10.1017/S0022112096000079
11.
Tanguy
,
S.
,
Ménard
,
T.
, and
Berlemont
,
A.
,
2007
, “
A Level Set Method for Vaporizing Two-Phase Flows
,”
J. Comput. Phys.
,
221
(
2
), pp.
837
853
.10.1016/j.jcp.2006.07.003
12.
Schlottke
,
J.
, and
Weigand
,
B.
,
2008
, “
Direct Numerical Simulation of Evaporating Droplets
,”
J. Comput. Phys.
,
227
(
10
), pp.
5215
5237
.10.1016/j.jcp.2008.01.042
13.
Lupo
,
G.
,
Ardekani
,
M. N.
,
Brandt
,
L.
, and
Duwig
,
C.
,
2019
, “
An Immersed Boundary Method for Flows With Evaporating Droplets
,”
Int. J. Heat Mass Transfer
,
143
, p.
118563
.10.1016/j.ijheatmasstransfer.2019.118563
14.
Pal
,
A. K.
, and
Biswas
,
G.
,
2023
, “
Accurate Prediction of Transport Coefficients of an Evaporating Liquid Drop
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
4
), p.
041602
.10.1115/1.4056542
15.
Scapin
,
N.
,
Costa
,
P.
, and
Brandt
,
L.
,
2020
, “
A Volume-of-Fluid Method for Interface-Resolved Simulations of Phase-Changing Two-Fluid Flows
,”
J. Comput. Phys.
,
407
, p.
109251
.10.1016/j.jcp.2020.109251
16.
Zhao
,
S.
,
Zhang
,
J.
, and
Ni
,
M. J.
,
2022
, “
Boiling and Evaporation Model for Liquid-Gas Flows: A Sharp and Conservative Method Based on the Geometrical VOF Approach
,”
J. Comput. Phys.
,
452
, p.
110908
.10.1016/j.jcp.2021.110908
17.
Nath
,
B.
,
Biswas
,
G.
,
Dalal
,
A.
, and
Sahu
,
K. C.
,
2017
, “
Migration of a Droplet in a Cylindrical Tube in the Creeping Flow Regime
,”
Phys. Rev. E
,
95
(
3
), p.
033110
.10.1103/PhysRevE.95.033110
18.
Ho
,
B. P.
, and
Leal
,
L. G.
,
1975
, “
The Creeping Motion of Liquid Drops Through a Circular Tube of Comparable Diameter
,”
J. Fluid Mech.
,
71
(
2
), pp.
361
383
.10.1017/S0022112075002625
19.
Song
,
Y.
,
Xu
,
J.
, and
Yang
,
Y.
,
2010
, “
Stokes Flow Past a Compound Drop in a Circular Tube
,”
Phys. Fluids
,
22
(
7
), p.
072003
.10.1063/1.3460301
20.
Borthakur
,
M. P.
,
Biswas
,
G.
, and
Bandyopadhyay
,
D.
,
2018
, “
Dynamics of Deformation and Pinch-Off of a Migrating Compound Droplet in a Tube
,”
Phys. Rev. E
,
97
(
4
), p.
043112
.10.1103/PhysRevE.97.043112
21.
Che
,
Z.
,
Yap
,
Y. F.
, and
Wang
,
T.
, “
Flow Structure of Compound Droplets Moving in Microchannels
,”
Phys. Fluids
,
30
(
1
), p.
012114
.
22.
Zhou
,
C.
,
Yue
,
P.
, and
Feng
,
J. J.
,
2008
, “
Deformation of a Compound Drop Through a Contraction in a Pressure-Driven Pipe Flow
,”
Int. J. Multiphase Flow
,
34
(
1
), pp.
102
109
.10.1016/j.ijmultiphaseflow.2007.09.002
23.
Liu
,
H.
,
Lu
,
Y.
,
Li
,
S.
,
Yu
,
Y.
, and
Sahu
,
K. C.
,
2021
, “
Deformation and Breakup of a Compound Droplet in Three-Dimensional Oscillatory Shear Flow
,”
Int. J. Multiphase Flow
,
134
, p.
103472
.10.1016/j.ijmultiphaseflow.2020.103472
24.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
25.
Welch
,
S. W. J.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
,
160
(
2
), pp.
662
682
.10.1006/jcph.2000.6481
26.
Tomar
,
G.
,
Biswas
,
G.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2005
, “
Numerical Simulation of Bubble Growth in Film Boiling Using Coupled Level-Set and Volume-of-Fluid Method
,”
Phys. Fluids
,
17
, p.
112103
.10.1063/1.2136357
27.
Irfan
,
M.
, and
Muradoglu
,
M.
,
2017
, “
A Front Tracking Method for Direct Numerical Simulation of Evaporation Process in a Multiphase System
,”
J. Comput. Phys.
,
337
, pp.
132
153
.10.1016/j.jcp.2017.02.036
28.
Gerlach
,
D.
,
Tomar
,
G.
,
Biswas
,
G.
, and
Durst
,
F.
,
2006
, “
Comparison of Volume-of-Fluid Methdos for Surface Tension-Dominant Two Phase Flows
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
740
754
.10.1016/j.ijheatmasstransfer.2005.07.045
29.
Sussman
,
M.
, and
Puckett
,
E.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.10.1006/jcph.2000.6537
30.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2189
.10.1063/1.1761178
31.
Juric
,
D.
, and
Tryggvason
,
G.
,
1998
, “
Computations of Boiling Flows
,”
Int. J. Multiphase Flow
,
24
(
3
), pp.
387
410
.10.1016/S0301-9322(97)00050-5
32.
Chang
,
Y. C.
,
Hou
,
T. Y.
,
Merriman
,
B.
, and
Osher
,
S.
,
1996
, “
A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows
,”
J. Comput. Phys.
,
124
(
2
), pp.
449
464
.10.1006/jcph.1996.0072
33.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.10.1016/0045-7825(79)90034-3
34.
Van der Vorst
,
H. A.
,
1992
, “
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for Solution of Non-Symmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
.10.1137/0913035
35.
Dubey
,
A.
,
Sahu
,
K. C.
,
Amiroudine
,
S.
, and
Biswas
,
G.
,
2023
, “
Migration of an Evaporating Droplet in a Cylindrical Tube
,”
Proceedings of the 17th International Heat Transfer Conference
,
IHTC-17
,
Cape Town, South Africa
, Aug. 14–18, p.
358
.
36.
Najafian
,
M.
, and
Mortazavi
,
S.
,
2023
, “
A Numerical Study of Drop Evaporation at High Density Ratios Using Front-Tracking Method
,”
Comput. Math. Appl.
,
134
, pp.
1
15
.10.1016/j.camwa.2022.12.019
37.
Deng
,
Z. T.
,
Litchford
,
R.
,
Jeng
,
S.
, and
Jeng
,
S. M.
,
1992
, “
Two-Dimensional Simulations of Droplet Evaporation and Deformation at High Pressure
,”
28th Joint Propulsion Conference and Exhibit
, Nashville, TN, Aug. 17, p.
3122
.
38.
Pedraza
,
O. J. G.
,
Ibarra
,
J. J. P.
,
Rubio-Maya
,
C.
,
González
,
S. R. G.
, and
Arista
,
J. A. R.
,
2018
, “
Numerical Study of the Drift and Evaporation of Water Droplets Cooled Down by a Forced Stream of Air
,”
Appl. Therm. Eng.
,
142
, pp.
292
302
.10.1016/j.applthermaleng.2018.07.011
39.
Reutzsch
,
J.
,
Kieffer-Roth
,
C.
, and
Weigand
,
B.
,
2020
, “
A Consistent Method for Direct Numerical Simulation of Droplet Evaporation
,”
J. Comput. Phys.
,
413
, p.
109455
.10.1016/j.jcp.2020.109455
You do not currently have access to this content.