Abstract

Electronic devices must be effectively cooled for long-term reliability and safe operation. It is essential to determine operating conditions and optimum dimensions of cooling devices in terms of device weight, space, cost, and sound limits. Plate fin heat sinks (PFHSs) are frequently used for cooling electronic devices. Optimum thermal designs of PFHSs are explored in this study using a teaching-learning-based-optimization (TLBO) algorithm where entropy generation (S˙gen) minimization, profit factor (J) maximization, base plate temperature excess (θb) minimization, total mass (mass) minimization, and total volume (volume) minimization are the objective functions of the constrained single-objective optimization problems. For further investigations of the entropy generation minimization method, three different optimization problems are also studied: minimization of thermal resistance (Rth), minimization of pressure drop (ΔP), and minimization of pumping power (W˙pump). Each optimization problem is subjected to a constraint, namely, temperature excess of base plate temperature (θb) should be lower than 10 K. Four optimization variables are considered which are the number of plate fins (N), freestream velocity (Vf), the thickness of the fin (tfin), and height of the fin (Hfin). Optimum configurations belonging to the different optimization problems are compared, and the effect of each optimization variable on the objective functions is discussed in detail. It is found that one can obtain optimum operating conditions and geometrical dimensions of the PFHSs according to the design objective, i.e., minimum mass requirement, space limitation, minimum base plate requirement, etc. As a result, the optimum designs of the studied cases are different which are superior to each other in terms of design targets.

References

1.
Bejan
,
A.
,
1995
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
2.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
, Wiley, New York.
3.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1996
,
Thermal Design and Optimization
,
Wiley-Interscience
, New York.
4.
Razelos
,
P.
, and
Kakatsios
,
X.
,
2000
, “
Optimum Dimensions of Convecting-Radiating Fins: Part I - Longitudinal Fins
,”
Appl. Therm. Eng.
,
20
(
13
), pp.
1161
1192
.10.1016/S1359-4311(99)00089-7
5.
Yu
,
X.
,
Feng
,
J.
,
Feng
,
Q.
, and
Wang
,
Q.
,
2005
, “
Development of a Plate-Pin Fin Heat Sink and Its Performance Comparisons With a Plate Fin Heat Sink
,”
Appl. Therm. Eng.
,
25
(
2–3
), pp.
173
182
.10.1016/j.applthermaleng.2004.06.016
6.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2007
, “
Optimal Design of Tube Banks in Crossflow Using Entropy Generation Minimization Method
,”
J. Thermophys. Heat Transfer
,
21
(
2
), pp.
372
378
.10.2514/1.26824
7.
Yilmaz
,
A.
,
2009
, “
Minimum Entropy Generation for Laminar Flow at Constant Wall Temperature in a Circular Duct for Optimum Design
,”
Heat Mass Transfer
,
45
(
11
), pp.
1415
1421
.10.1007/s00231-009-0519-4
8.
Şahin
,
A. Z.
,
1998
, “
A Second Law Comparison for Optimum Shape of Duct Subjected to Constant Wall Temperature and Laminar Flow
,”
Heat Mass Transfer
,
33
(
5–6
), pp.
425
430
.10.1007/s002310050210
9.
Şahin
,
A. Z.
,
1999
, “
Effect of Variable Viscosity on the Entropy Generation and Pumping Power in a Laminar Fluid Flow Through a Duct Subjected to Constant Heat Flux
,”
Heat Mass Transfer
,
35
(
6
), pp.
499
506
.10.1007/s002310050354
10.
Culham
,
J. R.
, and
Muzychka
,
Y. S.
,
2001
, “
Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
159
165
.10.1109/6144.926378
11.
Bejan
,
A.
,
1995
, “
The Optimal Spacing for Cylinders in Crossflow Forced Convection
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
3
), pp.
767
770
.10.1115/1.2822645
12.
Matos
,
R. S.
,
Vargas
,
J. V. C.
,
Laursen
,
T. A.
, and
Saboya
,
F. E. M.
,
2001
, “
Optimization Study and Heat Transfer Comparison of Straggered Circular and Elliptic Tubes in Forced Convection
,”
Int. J. Heat Mass Transfer
,
44
(
20
), pp.
3953
3961
.10.1016/S0017-9310(01)00006-0
13.
Shih
,
C. J.
, and
Liu
,
G. C.
,
2004
, “
Optimal Design Methodology of Plate-Fin Heat Sinks for Electronic Cooling Using Entropy Generation Strategy
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
3
), pp.
551
559
.10.1109/TCAPT.2004.831812
14.
Unuvar
,
A.
, and
Kargici
,
S.
,
2004
, “
An Approach for the Optimum Design of Heat Exchangers
,”
Int. J. Energy Res.
,
28
(
15
), pp.
1379
1392
.10.1002/er.1080
15.
Peters
,
M. S.
,
Timmerhaus
,
K. D.
, and
West
,
R. E.
,
2003
,
Plant Design and Economics for Chemical Engineers
,
McGraw-Hill Education
, New York.
16.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2004
, “
Optimization of Pin-Fin Heat Sinks Using Entropy Generation Minimization
,”
Proceedings of Intersociety Conference on Thermomechanical Phenomena in Electronic Systems
, Vol.
1
, Las Vegas, NV, June 1-4, pp.
259
267
.10.1109/T CAP T.2005.848507
17.
Inci
,
A. B.
, and
Bayer
,
Ö.
,
2019
, “
Experimental and Numerical Study on Heat Transfer Performance of Square,Cylindrical and Plate Heat Sinks in External Transition Flow Regime
,”
J. Therm. Sci. Technol.
,
39
(
2
), pp.
151
161
.https://dergipark.org.tr/tr/download/article-file/1244059
18.
Yang
,
K. S.
,
Chu
,
W. H.
,
Chen
,
I. Y.
, and
Wang
,
C. C.
,
2007
, “
A Comparative Study of the Airside Performance of Heat Sinks Having Pin Fin Configurations
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4661
4667
.10.1016/j.ijheatmasstransfer.2007.03.006
19.
Gupta
,
A.
,
Kumar
,
M.
, and
Patil
,
A. K.
,
2019
, “
Enhanced Heat Transfer in Plate Fin Heat Sink With Dimples and Protrusions
,”
Heat Mass Transfer
,
55
(
8
), pp.
2247
2260
.10.1007/s00231-019-02561-w
20.
Shaeri
,
M. R.
, and
Yaghoubi
,
M.
,
2009
, “
Thermal Enhancement From Heat Sinks by Using Perforated Fins
,”
Energy Convers. Manag.
,
50
(
5
), pp.
1264
1270
.10.1016/j.enconman.2009.01.021
21.
Sahin
,
B.
, and
Demir
,
A.
,
2008
, “
Thermal Performance Analysis and Optimum Design Parameters of Heat Exchanger Having Perforated Pin Fins
,”
Energy Convers. Manag.
,
49
(
6
), pp.
1684
1695
.10.1016/j.enconman.2007.11.002
22.
Sahin
,
B.
, and
Demir
,
A.
,
2008
, “
Performance Analysis of a Heat Exchanger Having Perforated Square Fins
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
621
632
.10.1016/j.applthermaleng.2007.04.003
23.
Rao
,
R. V.
,
Savsani
,
V. J.
, and
Vakharia
,
D. P.
,
2011
, “
Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems
,”
CAD Comput. Aided Des.
,
43
(
3
), pp.
303
315
.10.1016/j.cad.2010.12.015
24.
Rao
,
R. V.
,
Savsani
,
V. J.
, and
Balic
,
J.
,
2012
, “
Teaching-Learning-Based Optimization Algorithm for Unconstrained and Constrained Real-Parameter Optimization Problems
,”
Eng. Optim.
,
44
(
12
), pp.
1447
1462
.10.1080/0305215X.2011.652103
25.
Toĝan
,
V.
,
2012
, “
Design of Planar Steel Frames Using Teaching-Learning Based Optimization
,”
Eng. Struct.
,
34
, pp.
225
232
.10.1016/j.engstruct.2011.08.035
26.
Venkata Rao
,
R.
,
2016
, “
Review of Applications of Tlbo Algorithm and a Tutorial for Beginners to Solve the Unconstrained and Constrained Optimization Problems
,”
Decis. Sci. Lett.
,
5
(
1
), pp.
1
30
.
27.
Zou
,
F.
,
Wang
,
L.
,
Hei
,
X.
,
Chen
,
D.
, and
Wang
,
B.
,
2013
, “
Multi-Objective Optimization Using Teaching-Learning-Based Optimization Algorithm
,”
Eng. Appl. Artif. Intell.
,
26
(
4
), pp.
1291
1300
.10.1016/j.engappai.2012.11.006
28.
Rao
,
R. V.
, and
Patel
,
V.
,
2013
, “
Multi-Objective Optimization of Heat Exchangers Using a Modified Teaching-Learning-Based Optimization Algorithm
,”
Appl. Math. Model.
,
37
(
3
), pp.
1147
1162
.10.1016/j.apm.2012.03.043
29.
Rao
,
R. V.
,
2015
,
Teaching Learning Based Optimization Algorithm: And Its Engineering Applications
,
Springer International Publishing
, Berlin
.https://link.springer.com/book/10.1007/978-3-319-22732-0
30.
Teertstra
,
P.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 1999,
1999
, “
Analytical Modeling of Forced Convection in Slotted Plate Fin Heat Sinks
,”
ASME Int. Mech. Eng. Congr. Expo. Proc.
,
1
(
4
), pp.
3
11
.10.1115/IMECE1999-0964
31.
Yovanovich
,
M.
, and
Muzychka
,
Y.
,
1998
, “
Modeling Friction Factors in Non-Circular Ducts for Developing Laminar Flow
,”
AIAA
Paper No. 98-2492. 10.2514/6.98-2492
32.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
33.
Cengel
,
Y.
, and
Ghajar
,
A.
,
2014
,
Heat and Mass Transfer (in SI Units)
,
Mcgraw-Hill Education-Europe
,
London
.
You do not currently have access to this content.