Abstract

Long-term boiling experiments with long-life coolant have been made with the aim to apply a boiling cooling technology to the next generation high exothermic electronic devices. The long-life coolant commonly used for cooling electronic devices is a mixture of ethylene glycol and water with multiple antirust inhibitors as additives, which may result in some depositions on the heat transfer surface during the boiling. In this study, the heat transfer surface made of copper was set vertically, and long-term experiments have been performed under the pool boiling. The deposition process was monitored for constant heating conditions. From experimental results, a distinct surface temperature change was observed under constant heat flux conditions. Just after keeping constant heat flux, the surface temperature increases with time, a certain time later decreases, and finally takes a stable value. During the temperature rise, the deposition adheres to the heat transfer surface in dots, which may cause an increase in thermal resistance between the wall surface and the working fluid. However, during the temperature drop, large growth of dot-like depositions on the heat transfer surface could alter wettability and surface roughness, enhancing boiling heat transfer. In addition, to investigate the characteristics of the depositions adhered to the heat transfer surface, a component analysis has been performed, which shows that the main substance was strontium hydroxyapatite, which might be formed by chemical reaction between components in the additives under the boiling.

References

1.
Gong
,
C.
,
Mingze
,
J.
,
Shiwei
,
Z.
,
Yong
,
T.
, and
Zhenping
,
W.
,
2020
, “
Pool Boiling Enhancement of Novel Interconnected Microchannels With Reentrant Cavities for High-Power Electronics Cooling
,”
Int. J. Heat Mass Transfer
,
156
, p.
119836
.10.1016/j.ijheatmasstransfer.2020.119836
2.
Tang
,
K.
,
Jia
,
M.
,
Zhong
,
G.
,
Chen
,
S.
,
Zhang
,
S.
,
Yuan
,
W.
, and
Chen
,
G.
,
2020
, “
Pool Boiling Heat Transfer of Dual-Scale Porous Microchannel for High-Power Electronics Cooling
,”
Int. Commun. Heat Mass Transfer
,
138
, p.
106339
.10.1016/j.icheatmasstransfer.2022.106339
3.
Patrick
,
B.
,
Tarek
,
G.
,
Thomas
,
F.
,
Andrew
,
S.
,
Alexandra
,
M.
,
Robert
,
P.
, and
Nenad
,
M.
,
2020
, “
Water Immersion Cooling of High Power Density Electronics
,”
Int. J. Heat Mass Transfer
,
147
, pp.
1
13
.10.1016/j.ijheatmasstransfer.2019.118918
4.
Furusho
,
T.
,
Ma
,
T.
,
Yuki
,
K.
, and
Suzuki
,
K.
,
2016
, “
Boiling Heat Transfer Characteristics of Long-Life Coolant
,”
Proceedings of National Heat Transfer Symposium
,
Osaka, Japan
,
May 24–26,Vol. 53, Paper number: C214
.
5.
Ma
,
T.
,
Yuki
,
K.
,
Furusho
,
T.
,
Kibushi
,
R.
,
Unno
,
N.
, and
Suzuki
,
K.
,
2017
, “
Immersion Cooling Technology of SiC-Based on-Vehicle Inverter by Anti-Freezing Liquid With Subcooled Boiling
,” 2017 International Conference on Electronics Packaging (
ICEP
),
Yamagata, Japan
,
Apr. 19–22,
pp.
199
201
.10.23919/ICEP.2017.7939356
6.
Shinozaki
,
M.
,
Ushifusa
,
H.
,
Asai
,
Y.
,
Ipposhi
,
S.
,
Ito
,
D.
, and
Saito
,
Y.
,
2017
, “
The Influence of Sediments on Heating Surface in a Boiling of Two-Liquid Mixture
,”
Proceedings of National Heat Transfer Symposium
, Vol.
54
,
Saitama, Japan
,
May 24–26, Paper number: C114
.
7.
Najibi
,
S. H.
,
Müller-Steinhagen
,
H.
, and
Jamialahmadi
,
M.
,
1997
, “
Calcium Sulphate Scale Formation During Subcooled Flow Boiling
,”
Chem. Eng. Sci.
,
52
(
8
), pp.
1265
1284
.10.1016/S0009-2509(96)00505-2
8.
Esawy
,
M.
,
Malayeri
,
M. R.
, and
Müller-Steinhagen
,
H.
,
2010
, “
Crystallization Fouling of Finned Tubes During Pool Boiling: Effect of Fin Density
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
46
(
10
), pp.
1167
1176
.10.1007/s00231-010-0690-7
9.
Esawy
,
M.
,
Nikoo
,
A. H.
, and
Malayeri
,
M. R.
,
2023
, “
Crystallization Fouling of Turbo-Structured Tubes During Nucleate Pool Boiling
,”
Appl. Therm. Eng.
,
228
, p.
120484
.10.1016/j.applthermaleng.2023.120484
10.
Esawy
,
M.
,
Abd-Elhady
,
M. S.
,
Malayeri
,
M. R.
, and
Müller-Steinhagen
,
H.
,
2010
, “
Influence of Sintering on Deposit Formation During Pool Boiling of Calcium Sulphate Solutions
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1439
1447
.10.1016/j.expthermflusci.2010.07.007
11.
Peyghambarzadeh
,
S. M.
, and
Bahrami
,
N.
,
2013
, “
Statistical Analysis of Calcium Sulfate Scaling Under Boiling Heat Transfer
,”
Appl. Therm. Eng.
,
53
(
1
), pp.
108
113
.10.1016/j.applthermaleng.2013.01.016
12.
Peyghambarzadeh
,
S. M.
,
Vatani
,
A.
, and
Jamialahmadi
,
M.
,
2013
, “
Influences of Bubble Formation on Different Types of Heat Exchanger Fouling
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
848
856
.10.1016/j.applthermaleng.2012.07.015
13.
Dash
,
S.
,
Rapoport
,
L.
, and
Varanasi
,
K. K.
,
2018
, “
Crystallization-Induced Fouling During Boiling: Formation Mechanisms to Mitigation Approaches
,”
Langmuir
,
34
(
3
), pp.
782
788
.10.1021/acs.langmuir.7b02936
14.
Berce
,
J.
,
Arhar
,
K.
,
Hadzic
,
A.
,
Zupančič
,
M.
,
Može
,
M.
, and
Golobič
,
I.
,
2024
, “
Boiling-Induced Surface Aging and Crystallization Fouling of Functionalized Smooth and Laser-Textured Copper Interfaces
,”
Appl. Therm. Eng.
,
242
, p.
122540
.10.1016/j.applthermaleng.2024.122540
15.
Kwark
,
S. M.
,
Kumar
,
R.
,
Moreno
,
G.
,
Yoo
,
J.
, and
You
,
S. M.
,
2010
, “
Pool Boiling Characteristics of Low Concentration Nanofluids
,”
Int. J. Heat Mass Transf
er,
53
(
5–6
), pp.
972
981
.10.1016/j.ijheatmasstransfer.2009.11.018
16.
Kwark
,
S. M.
,
Moreno
,
G.
,
Kumar
,
R.
,
Moon
,
H.
, and
You
,
S. M.
,
2010
, “
Nanocoating Characterization in Pool Boiling Heat Transfer of Pure Water
,”
Int. J. Heat Mass Transf
er,
53
(
21–22
), pp.
4579
4587
.10.1016/j.ijheatmasstransfer.2010.06.035
17.
Berce
,
J.
,
Hadzic
,
A.
,
Može
,
M.
,
Arhar
,
K.
,
Gjerkes
,
H.
,
Zupančič
,
M.
, and
Golobič
,
I.
,
2024
, “
Effect of SurfaceWettability on Nanoparticle Deposition During Pool Boiling on Laser-Textured Copper Surfaces
,”
Nanomaterials
,
14
(
3
), pp.
311
17
.10.3390/nano14030311
18.
Lee
,
C. Y.
,
Bhuiya
,
M. M. H.
, and
Kim
,
K. J.
,
2010
, “
Pool Boiling Heat Transfer With Nano-Porous Surface
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4274
4279
.10.1016/j.ijheatmasstransfer.2010.05.054
19.
Moˇze
,
M.
,
2020
, “
Effect of Boiling-Induced Aging on Pool Boiling Heat Transfer Performance of Untreated and Laser-Textured Copper Surfaces
,”
Appl. Therm. Eng.
,
181
, p.
116025
.10.1016/j.applthermaleng.2020.116025
20.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2017
, “
Characterization of Pool Boiling of Seawater and Regulation of Crystallization Fouling by Physical Aberration
,”
Heat Transfer Eng.
,
38
(
14–15
), pp.
1296
1304
.10.1080/01457632.2016.1242963
21.
Chaudhri
,
I. H.
, and
Mcdougall
,
I. R.
,
1969
, “
Aging Studies in Nucleate Pool Boiling of Isopropyl Acetate and Perchloroethylene
,”
Int. J. Heat Mass Transfer
,
12
(
6
), pp.
681
688
.10.1016/0017-9310(69)90002-7
22.
Malayeri
,
M. R.
,
Müller-Steinhagen
,
H.
, and
Bartlett
,
T. H.
,
2005
, “
Fouling of Tube Bundles Under Pool Boiling Conditions
,”
Chem. Eng. Sci.
,
60
(
6
), pp.
1503
1513
.10.1016/j.ces.2004.10.017
23.
Graham
,
J.
,
Hawa
,
A.
, and
Weisensee
,
P.
,
2020
, “
Evolution of Heat Transfer in Pool Boiling in Contaminated Water
,”
ASME
Paper No. ICNMM2020-1041.10.1115/ICNMM2020-1041
24.
Vosough
,
A.
,
Assari
,
M. R.
,
Peyghambarzadeh
,
S. M.
, and
Azizi
,
S.
,
2020
, “
Influence of Fluid Flow Rate on the Fouling Resistance of Calcium Sulfate Aqueous Solution in Subcooled Flow Boiling Condition
,”
Int. J. Therm Sci.
,
154
, p.
106397
.10.1016/j.ijthermalsci.2020.106397
25.
Fujii
,
T.
,
1959
, “
Experimental Formula of Free-Convection Heat-Transfer From a Vertical Cylinder or a Vertical Plate
,”
JSME
,
25
(
152
), pp.
287
291
.10.1299/kikai1938.25.287
26.
Uesawa
,
S.
,
Koizumi
,
Y.
,
Shibata
,
M.
, and
Yoshida
,
H.
,
2017
, “
Saturated Pool Nucleate Boiling on Heat Transfer Surface With Deposited Sea Salts
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
3
, p.
041002
.10.1115/1.4036987
27.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
28.
Može
,
M.
,
Zupančič
,
M.
, and
Golobič
,
I.
,
2020
, “
Investigation of the Scatter in Reported Pool Boiling CHF Measurements Including Analysis of Heat Flux and Measurement Uncertainty Evaluation Methodology
,”
Appl. Therm. Eng.
,
169
, p.
114938
.10.1016/j.applthermaleng.2020.114938
29.
Labuntsov
,
D. A.
,
1972
, “
Heat Transfer Problems With Nucleate Boiling of Liquids
,”
Therm. Eng.
,
19
, pp.
21
28
.https://www.osti.gov/biblio/4412897
30.
Elkholy
,
A.
, and
Kemper
,
R.
,
2020
, “
Investigation of Surface Aging Effects on the Repeatability of Saturated Pool Boiling Heat Transfer
,”
19th ITherm Conference
,
Orlando, FL
,
July 21–23,
pp.
893
899
.10.1109/ITherm45881.2020.9190345
31.
Suda
,
S.
, and
Seri
,
O.
,
2015
, “
Effect of Phosphoric Acid on Pitting Attack of Aluminum in Formic Acid Solution
,”
Zairyo-to-Kankyo
,
64
(
6
), pp.
228
230
.10.3323/jcorr.64.228
32.
Kyo
,
Y.
,
Oya
,
Y.
,
Kanamori
,
K.
,
Kawano
,
K.
, and
Kumagai
,
M.
,
2017
, “
The Mechanism of Ant's Nest Corrosion Resistance of the Copper Alloy Containing High Amount of Phosphorus
,”
UACJ Tech. Rep.
,
4
, pp.
10
17
.https://www.uacj.co.jp/review/uacj/vol4no1/pdf/vol4no1_02.pdf
You do not currently have access to this content.