Abstract

Slip flows in small-scale flow networks involve simultaneous presence of multiple factors governing the flow field. In addition, conditions of upstream wall need to be clearly defined for quantifying the total heat that fluid receives from the wall. The present work addresses these aspects by analyzing the heat transfer aspects of slip flow of gaseous nitrogen through a circular pipe, undergoing either heating or cooling. The complete form of the governing equations is solved numerically while retaining property variation. The thermal field is found to exhibit two distinct asymptotic regions, with the first one representing fully developed heat transfer and the second one representing isothermal states. The fully developed Nusselt number (Nufd) is found to rise first, before dropping continuously with rise in Knudsen number (Kn). The pair of Kn and maximum Nufd is found to be dependent on Peclet number (Pe) of the system. Local Nu is found to drop to a minimum, lower than Nufd for KnO(103) due to a significant radial advection. The presence of an adiabatic upstream wall reveals that heat may propagate up to the inlet for Kn0.015. An analytical solution is developed to approximate this limiting value of Kn, and it agrees well with the numerical results. The observed flow behavior leads to the categorization of flow regime into three types: (i) Kn<0.001, possessing dependence on change in Pe only, (ii) 0.001Kn<0.01, possessing concurrence of effects due to change in Pe and Kn, and (iii) 0.01Kn<0.1, possessing dependence on change in Kn only. Further, Pe is shown to represent Nubulk for the flow, where in the range 0.01Kn<0.1, NutotNubulk as Kn approaches 0.01 and NutotNuin as Kn approaches 0.1. A convenient approach is proposed to evaluate Nutot for any condition of the upstream wall. These outcomes indicate the necessity to clearly define the condition of the upstream wall and to evaluate the total heat transfer in small-scale heat exchangers, which may be much larger than what fluid carries downstream.

References

1.
Agrawal
,
A.
,
Kushwaha
,
H. M.
, and
Jadhav
,
R. S.
,
2020
, Microscale Flow and Heat Transfer (Mechanical Engineering Series),
Springer Nature, Cham, Switzerland
.
2.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M.
,
2014
, Heat Transfer Fluid Flow Minichannels Microchannels, Elsevier Science, Amsterdam, The Netherlands.
3.
Colin
,
S.
,
2012
, “
Gas Microflows in the Slip Flow Regime: A Critical Review on Convective Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
2
), p.
020908
.10.1115/1.4005063
4.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1962
, “
Laminar Heat Transfer in Tubes Under Slip-Flow Conditions
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
84
(
4
), pp.
363
369
.10.1115/1.3684399
5.
Ameel
,
T. A.
,
Wang
,
X.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
,
1997
, “
Laminar Forced Convection in a Circular Tube With Constant Heat Flux and Slip Flow
,”
Microscale Thermophys. Eng.
,
1
(
4
), pp.
303
320
.10.1080/108939597200160
6.
Li
,
J. M.
,
Wang
,
B. X.
, and
Peng
,
X. F.
,
2000
, “
Wall-Adjacent Layer' Analysis for Developed-Flow Laminar Heat Transfer of Gases in Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
5
), pp.
839
847
.10.1016/S0017-9310(99)00109-X
7.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
,
2001
, “
Heat Transfer in Microtubes With Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2395
2403
.10.1016/S0017-9310(00)00298-2
8.
Aydin
,
O.
, and
Avci
,
M.
,
2006
, “
Heat and Fluid Flow Characteristics of Gases in Micropipes
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1723
1730
.10.1016/j.ijheatmasstransfer.2005.10.020
9.
Jeong
,
H. E.
, and
Jeong
,
J. T.
,
2006
, “
Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube
,”
J. Mech. Sci. Technol.
,
20
(
1
), pp.
158
166
.10.1007/BF02916209
10.
Satapathy
,
A. K.
,
2010
, “
Slip Flow Heat Transfer in an Infinite Microtube With Axial Conduction
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
153
160
.10.1016/j.ijthermalsci.2009.06.012
11.
Cetin
,
B.
,
Yazicioglu
,
A. G.
, and
Kakac
,
S.
,
2008
, “
Fluid Flow in Microtubes With Axial Conduction Including Rarefaction and Viscous Dissipation
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
535
544
.10.1016/j.icheatmasstransfer.2008.01.003
12.
Liangbin
,
S.
,
Boshu
,
H.
, and
Yu
,
W.
,
2022
, “
Analytical Solution of Thermally Developing Heat Transfer in Circular and Parallel Plates Microchannels
,”
Sadhana
,
47
(
4
), p.
219
.10.1007/s12046-022-01951-x
13.
Su
,
L.
,
He
,
B.
,
Wang
,
G.
,
Xiao
,
R.
, and
Yu
,
W.
,
2022
, “
Simultaneously Developing Flow and Heat Transfer in Circular and Parallel-Plates Microchannels With Velocity Slip and Temperature Jump
,”
Int. J. Therm. Sci.
,
177
, p.
107590
.10.1016/j.ijthermalsci.2022.107590
14.
Ou
,
J. W.
, and
Cheng
,
K. C.
,
1973
, “
Effects of Pressure Work and Viscous Dissipation on Graetz Problem for Gas Flows in Parallel-Plate Channels
,”
Wärme - Und Stoffübertragung
,
6
(
4
), pp.
191
198
.10.1007/BF02575264
15.
Sun
,
Z.
, and
Jaluria
,
Y.
,
2012
, “
Convective Heat Transfer in Pressure-Driven Nitrogen Slip Flows in Long Microchannels: The Effects of Pressure Work and Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3488
3497
.10.1016/j.ijheatmasstransfer.2012.02.060
16.
Hadjiconstantinou
,
N. G.
,
2003
, “
Dissipation in Small Scale Gaseous Flows
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
5
), pp.
944
947
.10.1115/1.1571088
17.
Haddout
,
Y.
, and
Lahjomri
,
J.
,
2015
, “
The Extended Graetz Problem for a Gaseous Slip Flow in Micropipe and Parallel-Plate Microchannel With Heating Section of Finite Length: Effects of Axial Conduction, Viscous Dissipation and Pressure Work
,”
Int. J. Heat Mass Transfer
,
80
, pp.
673
687
.10.1016/j.ijheatmasstransfer.2014.09.064
18.
Nicolas
,
X.
,
Chénier
,
E.
,
Tchekiken
,
C.
, and
Lauriat
,
G.
,
2018
, “
Revisited Analysis of Gas Convection and Heat Transfer in Micro Channels: Influence of Viscous Stress Power at Wall on Nusselt Number
,”
Int. J. Therm. Sci.
,
134
(
May
), pp.
565
584
.10.1016/j.ijthermalsci.2018.05.049
19.
Haddout
,
Y.
,
Essaghir
,
E.
,
Oubarra
,
A.
, and
Lahjomri
,
J.
,
2022
, “
Effects of Viscous Dissipation and Pressure Work on the Extended Graetz Problem for a Gaseous Slip Flow in a Microchannel With Walls Having a Constant Temperature
,”
J. Eng. Phys. Thermophys.
,
95
(
6
), pp.
1560
1569
.10.1007/s10891-022-02624-6
20.
Maslen
,
S. H.
,
1958
, “
On Heat Transfer in Slip Flow
,”
J. Aeronaut. Sci.
,
25
(
6
), pp.
400
401
.10.2514/8.7698
21.
Hong
,
C.
, and
Asako
,
Y.
,
2010
, “
Some Considerations on Thermal Boundary Condition of Slip Flow
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3075
3079
.10.1016/j.ijheatmasstransfer.2010.03.020
22.
Demsis
,
A.
,
Verma
,
B.
,
Prabhu
,
S. V.
, and
Agrawal
,
A.
,
2009
, “
Experimental Determination of Heat Transfer Coefficient in the Slip Regime and Its Anomalously Low Value
,”
Phys. Rev. E
,
80
(
1
), pp.
1
8
.10.1103/PhysRevE.80.016311
23.
Hemadri
,
V.
,
Biradar
,
G. S.
,
Shah
,
N.
,
Garg
,
R.
,
Bhandarkar
,
U. V.
, and
Agrawal
,
A.
,
2018
, “
Experimental Study of Heat Transfer in Rarefied Gas flow in a Circular Tube With Constant Wall Temperature
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
326
333
.10.1016/j.expthermflusci.2017.12.030
24.
Jha
,
A. A.
, and
Agrawal
,
A.
,
2023
, “
Heat Transfer Characteristics of Mildly Rarefied Gaseous Flows in the Slip Regime
,”
Int. J. Therm. Sci.
,
184
, p.
107882
.10.1016/j.ijthermalsci.2022.107882
25.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
, 2nd ed.,
John Wiley and Sons
,
Hoboken, NJ
.
26.
Agrawal
,
A.
, and
Prabhu
,
S. V.
,
2008
, “
Survey on Measurement of Tangential Momentum Accommodation Coefficient
,”
J. Vac. Sci. Technol., A
,
26
(
4
), pp.
634
645
.10.1116/1.2943641
27.
Sharma
,
A.
,
2021
,
Introduction to Computational Fluid Dynamics: Development, Application and Analysis
,
Springer Nature
, Cham, Switzerland.
28.
Sreekanth
,
A. K.
,
1969
, “
Slip Flow Through Long Circular Tubes
,”
Proceedings of the Sixth International Symposium on Rarefied Gas Dynamics
,
Academic Press
,
New York
, July 22–26, pp.
667
680
.
29.
Jha
,
A. A.
, and
Agrawal
,
A.
,
2022
, “
Hydrodynamic and Heat Transfer Aspects of Low Peclet Gaseous Flows Through an Isothermally Heated Pipe
,”
AIP Adv.
,
12
(
4
), p.
045113
.10.1063/5.0086837
30.
Jha
,
A. A.
, and
Agrawal
,
A.
,
2023
, “
Low Peclet Gaseous Flows Through Circular Pipe Under Two Different Thermal Conditions
,”
J. Therm. Anal. Calorim.
,
148
(
7
), pp.
2799
2814
.10.1007/s10973-022-11772-z
You do not currently have access to this content.