Abstract

In this article, the linear stability of nonisothermal plane Couette flow (NPCF) in an anisotropic and inhomogeneous porous layer underlying a fluid layer is investigated. The Darcy model is utilized to describe the flow in the porous layer. The stability analysis indicates that the introduction of media-anisotropy (K*) and media-inhomogeneity (in terms of inhomogeneity parameter A) still renders the isothermal plane Couette flow (IPCF) in such superposed fluid-porous systems unconditionally stable. For NPCF, three different modes, unimodal (porous or fluid mode), bimodal (porous and fluid mode) and trimodal (porous, fluid and porous mode), are observed along the neutral stability curves and characterized by the secondary flow patterns. It has been found that the instability of the fluid-porous system increases on increasing the media permeability and inhomogeneity along the vertical direction. Contrary to natural convection, at d̂=0.2 (d̂=depth of fluid layer/depth of porous layer) and K*=1, in which the critical wavelength shows both increasing and decreasing characteristics with increasing values of A (0A5), here in the present study, the same continuously decreases with increasing values of A. Finally, scale analysis indicates that the onset of natural convection requires a relatively higher temperature difference (ΔT) between lower and upper plates in the presence of Couette flow. However, by including media anisotropy and inhomogeneity in the porous media, the system becomes unstable even for a small critical temperature difference of about 2 °C.

References

1.
Allen
,
M. B.
,
1984
,
Collocation Techniques for Modelling Compositional Flows in Oil Reservoirs
,
Springer,
Berlin.10.1007/978-3-642-82213-1
2.
Ewings
,
R. E.
, and
Weekes
,
S.
,
1998
, “
Numerical Methods for Contaminant Transport in Porous Media
,”
Adv. Comput. Math.
,
202
, pp.
75
95
.10.1201/9781003419839-5
3.
Suchomel
,
B. J.
,
Chen
,
B. M.
, and
Allen
,
M. B.
,
1998
, “
Network Model of Flow, Transport and Biofilm Effects in Porous Media
,”
Transp. Porous Media
,
30
(
1
), pp.
1
23
.10.1023/A:1006560705680
4.
Blest
,
D. C.
,
Duffy
,
B. R.
,
McKee
,
S.
, and
Zulkifle
,
A. K.
,
1999
, “
Curing Simulation of Thermoset Composites
,”
Composites Part A
,
30
(
11
), pp.
1289
1309
.10.1016/S1359-835X(99)00032-9
5.
Sun
,
W. J.
,
1973
, “
Convective Instability in Superposed Porous and Free Layers
,” Ph.D. thesis,
University of Minnesota
, Minneapolis, MN.
6.
Nield
,
D. A.
,
1977
, “
Onset of Convection in a Fluid Layer Overlying a Layer of a Porous Medium
,”
J. Fluid Mech.
,
81
(
3
), pp.
513
522
.10.1017/S0022112077002195
7.
Chen
,
F.
, and
Chen
,
C. F.
,
1988
, “
Onset of Finger Convection in a Horizontal Porous Layer Underlying a Fluid Layer
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
403
409
.10.1115/1.3250499
8.
Chen
,
F.
, and
Chen
,
C. F.
,
1989
, “
Experimental Investigation of Convective Stability in a Superposed Fluid and Porous Layer When Heated From Below
,”
J. Fluid Mech.
,
207
, pp.
311
321
.10.1017/S0022112089002594
9.
Chen
,
F.
,
Chen
,
C. F.
, and
Pearlstein
,
A. J.
,
1991
, “
Convective Instability in Superposed Fluid and Anisotropic Porous Layers
,”
Phys. Fluids A
,
3
(
4
), pp.
556
565
.10.1063/1.858117
10.
Chen
,
F.
, and
Hsu
,
L. H.
,
1991
, “
Onset of Thermal Convection in an Anisotropic and Inhomogeneous Porous Layer Underlying a Fluid Layer
,”
J. Appl. Phys.
,
69
(
9
), pp.
6289
6301
.10.1063/1.348827
11.
Orszag
,
S. A.
, and
Patera
,
A. T.
,
1980
, “
Subcritical Transition to Turbulence in Plane Channel Flows
,”
Phys. Rev. Lett.
,
45
(
12
), pp.
989
993
.10.1103/PhysRevLett.45.989
12.
Chang
,
M. H.
,
2005
, “
Thermal Convection in Superposed Fluid and Porous Layers Subjected to a Horizontal Plane Couette Flow
,”
Phys. Fluids
,
17
(
6
), p.
064106
.10.1063/1.1932312
13.
Chang
,
M. H.
,
2006
, “
Thermal Convection in Superposed Fluid and Porous Layers Subjected to Plane Poiseuille Flow
,”
Phys. Fluids
,
18
(
3
), p.
035104
.10.1063/1.2182004
14.
Yin
,
C.
,
Niu
,
J.
,
Fu
,
C.
, and
Tan
,
W.
,
2013
, “
Thermal Convection of a Viscoelastic Fluid in a Fluid-Porous System Subjected to a Horizontal Plane Couette Flow
,”
Int. J. Heat Fluid Flow
,
44
, pp.
711
718
.10.1016/j.ijheatfluidflow.2013.10.002
15.
Yin
,
C.
,
Wang
,
C.
, and
Wang
,
S.
,
2020
, “
Thermal Instability of a Viscoelastic Fluid in a Fluid-Porous System With a Plane Poiseuille Flow
,”
Appl. Math. Mech.
,
41
(
11
), pp.
1631
1650
.10.1007/s10483-020-2663-7
16.
Samanta
,
A.
,
2017
, “
Role of Slip on the Linear Stability of a Liquid Flow Through a Porous Channel
,”
Phys. Fluids
,
29
(
9
), p.
094103
.10.1063/1.4993818
17.
Deepu
,
P.
,
Anand
,
P.
, and
Basu
,
S.
,
2015
, “
Stability of Poiseuille Flow in a Fluid Overlying an Anisotropic and Inhomogeneous Porous Layer
,”
Phys. Rev E
,
92
(
2
), p.
023009
.10.1103/PhysRevE.92.023009
18.
Samanta
,
A.
,
2023
, “
Modal Analysis of a Fluid Flowing Over a Porous Substrate
,”
Theor. Comput. Fluid Dyn.
,
37
(
2
), pp.
241
260
.10.1007/s00162-023-00654-1
19.
Anjali
,
Khan
,
A.
, and
Bera
,
P.
,
2022
, “
Stability of Non-Isothermal Poiseuille Flow in a Fluid Overlying an Anisotropic and Inhomogeneous Porous Domain
,”
J. Fluid Mech.
,
949
, p.
A44
.10.1017/jfm.2022.783
20.
Samanta
,
A.
,
2022
, “
Nonmodal and Modal Analyses of a Flow Through Inhomogeneous and Anisotropic Porous Channel
,”
Int. J. Multiphase Flow
,
157
, p.
104230
.10.1016/j.ijmultiphaseflow.2022.104230
21.
Karmakar
,
S.
, and
Shukla
,
P.
,
2023
, “
Instability of a Plane Poiseuille Flow Bounded Between Inhomogeneous Anisotropic Porous Layers
,”
Therm. Sci. Eng. Prog.
,
40
, p.
101758
.10.1016/j.tsep.2023.101758
22.
Chang
,
T. Y.
,
Chen
,
F.
, and
Chang
,
M. H.
,
2017
, “
Stability of Plane Poiseuille-Couette Flow in a Fluid Layer Overlying a Porous Layer
,”
J. Fluid Mech.
,
826
, pp.
376
395
.10.1017/jfm.2017.442
23.
Sengupta
,
S.
, and
De
,
S.
,
2019
, “
Couette-Poiseuille Flow of a Bingham Fluid Through a Channel Overlying a Porous Layer
,”
J. Non-Newtonian Fluid Mech.
,
265
, pp.
28
40
.10.1016/j.jnnfm.2019.01.002
24.
Sengupta
,
S.
, and
De
,
S.
,
2020
, “
Effect of Couette Component on the Stability of Poiseuille Flow of a Bingham Fluid–Porous System: Modal and Non-Modal Approaches
,”
Phys. Fluids
,
32
(
6
), p.
064103
.10.1063/5.0010865
25.
Samanta
,
A.
,
2020
, “
Linear Stability of a Plane Couette-Poiseuille Flow Overlying a Porous Layer
,”
Int. J. Multiphase Flow
,
123
, p.
103160
.10.1016/j.ijmultiphaseflow.2019.103160
26.
Hooshyar
,
S.
,
Yoshikawa
,
H. N.
, and
Mirbod
,
P.
,
2022
, “
The Impact of Imposed Couette Flow on the Stability of Pressure-Driven Flows Over Porous Surfaces
,”
J. Eng. Math.
,
132
(
1
), p.
15
.10.1007/s10665-021-10195-3
27.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
,
1995
, “
Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid–I. Theoretical Development
,”
Int. J. Heat Mass Transfer
,
38
(
14
), pp.
2635
2646
.10.1016/0017-9310(94)00346-W
28.
Hirata
,
S.
,
Goyeau
,
B.
,
Gobin
,
D.
,
Chandesris
,
M.
, and
Jamet
,
D.
,
2009
, “
Stability of Natural Convection in Superposed Fluid and Porous Layers: Equivalence of the One- and Two-Domain Approaches
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
533
536
.10.1016/j.ijheatmasstransfer.2008.07.045
29.
Nield
,
D.
,
1991
, “
The Limitations of the Brinkman-Forchheimer Equation in Modeling Flow in a Saturated Porous Medium and at an Interface
,”
Int. J. Heat Fluid Flow
,
12
(
3
), pp.
269
272
.10.1016/0142-727X(91)90062-Z
30.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
,
Springer,
New York.10.1007/978-1-4614-5541-7
31.
Hill
,
A. A.
, and
Straughan
,
B.
,
2009
, “
Poiseuille Flow in a Fluid Overlying a Highly Porous Material
,”
Adv. Water Resour.
,
32
(
11
), pp.
1609
1614
.10.1016/j.advwatres.2009.08.007
32.
Auriault
,
J.-L.
,
2009
, “
On the Domain of Validity of Brinkman's Equation
,”
Transp. Porous Media
,
79
(
2
), pp.
215
223
.10.1007/s11242-008-9308-7
33.
Jones
,
I. P.
,
1973
, “
Low Reynolds Number Flow Past a Porous Spherical Shell
,”
Math. Proc. Cambridge Philos. Soc.
,
73
(
1
), pp.
231
238
.10.1017/S0305004100047642
34.
Beavers
,
G. S.
, and
Joseph
,
D. D.
,
1967
, “
Boundary Conditions at a Naturally Permeable Wall
,”
J. Fluid Mech.
,
30
(
1
), pp.
197
207
.10.1017/S0022112067001375
35.
Straughan
,
B.
,
2004
,
The Energy Method, Stability, and Nonlinear Convection
, Vol.
91
,
Springer
, New York.10.1007/978-0-387-21740-6
36.
McCurdy
,
M.
,
Moore
,
N.
, and
Wang
,
X.
,
2019
, “
Convection in a Coupled Free Flow-Porous Media System
,”
SIAM J. Appl. Math.
,
79
(
6
), pp.
2313
2339
.10.1137/19M1238095
37.
Girault
,
V.
, and
Rivière
,
B.
,
2009
, “
Dg Approximation of Coupled Navier–Stokes and Darcy Equations by Beaver–Joseph–Saffman Interface Condition
,”
SIAM J. Numer. Anal.
,
47
(
3
), pp.
2052
2089
.10.1137/070686081
38.
Chang
,
M. H.
,
Chen
,
F.
, and
Straughan
,
B.
,
2006
, “
Instability of Poiseuille Flow in a Fluid Overlying a Porous Layer
,”
J. Fluid Mech.
,
564
, pp.
287
303
.10.1017/S0022112006001583
39.
Drazin
,
P. G.
, and
Reid
,
W. H.
,
2004
,
Hydrodynamic Stability
,
Cambridge University Press,
UK.10.1017/CBO9780511616938
40.
Zhao
,
M.
,
Zhao
,
H.
,
Wang
,
S.
, and
Yin
,
C.
,
2020
, “
The Onset of Double-Diffusive Convection in a Two-Layer System With a Viscoelastic Fluid-Saturated Porous Medium Under High-Frequency Vibration
,”
ASME J. Heat Transfer
,
143
(
1
), p.
012601
.10.1115/1.4048621
41.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
1988
,
Spectral Method in Fluid Dynamics
,
Springer,
Berlin.10.1007/978-3-642-84108-8
42.
Moler
,
C. B.
, and
Stewart
,
G. W.
,
1973
, “
An Algorithm for Generalized Matrix Eigenvalue Problems
,”
SIAM J. Numer. Anal.
,
10
(
2
), pp.
241
256
.10.1137/0710024
43.
Hooper
,
A. P.
, and
Boyd
,
W. G. C.
,
1983
, “
Shear Flow Instability at the Interface Between Two Viscous Fluids
,”
J. Fluid Mech.
,
128
(
1
), pp.
507
528
.10.1017/S0022112083000580
44.
Boomkamp
,
P. A. M.
, and
Miesen
,
R. H. M.
,
1996
, “
Classification of Instabilities in Parallel Two-Phase Flow
,”
Int. J. Multiphase Flow
,
22
, pp.
67
88
.10.1016/S0301-9322(96)90005-1
45.
Sharma
,
A. K.
,
Khandelwal
,
M. K.
, and
Bera
,
P.
,
2018
, “
Finite Amplitude Analysis of Non-Isothermal Parallel Flow in a Vertical Channel Filled With High Permeable Porous Medium
,”
J. Fluid Mech.
,
857
, pp.
469
507
.10.1017/jfm.2018.745
46.
Bera
,
P.
, and
Khalili
,
A.
,
2002
, “
Stability of Mixed Convection in an Anisotropic Vertical Porous Channel
,”
Phys. Fluids
,
14
(
5
), pp.
1617
1630
.10.1063/1.1460879
47.
Khan
,
A.
,
Bera
,
P.
, and
Khandelwal
,
M. K.
,
2019
, “
Bifurcation and Instability of Annular Poiseuille Flow in the Presence of Stable Thermal Stratification: Dependence on Curvature Parameter
,”
Phys. Fluids
,
31
(
10
), p.
104105
.10.1063/1.5122289
48.
Rapp
,
B. E.
,
2022
,
Microfluidics: Modeling, Mechanics and Mathematics
,
Elsevier,
Amsterdam, The Netherlands.https://shop.elsevier.com/books/microfluidics/rapp/978-0-12-824022-9
49.
Straughan
,
B.
,
2001
, “
Surface-Tension-Driven Convection in a Fluid Overlying a Porous Layer
,”
J. Comput. Phys.
,
170
(
1
), pp.
320
337
.10.1006/jcph.2001.6739
50.
Straughan
,
B.
,
2002
, “
Effect of Property Variation and Modelling on Convection in a Fluid Overlying a Porous Layer
,”
Int. J. Numer. Anal. Meth. Geomech.
,
26
(
1
), pp.
75
97
.10.1002/nag.193
51.
Perkins
,
T. K.
, and
Johnston
,
O. C.
,
1963
, “
A Review of Diffusion and Dispersion in Porous Media
,”
Soc. Pet. Eng. J.
,
3
(
1
), pp.
70
84
.10.2118/480-PA
52.
Doomra
,
S.
,
Sharma
,
G.
, and
Bera
,
P.
,
2022
, “
Effect of Anisotropy and Inhomogeneity on the Stability of Liquid Film Flowing Down a Porous Inclined Plane
,”
Phys. Fluids
,
34
(
12
), p.
124116
.10.1063/5.0127512
53.
Khan
,
A.
, and
Bera
,
P.
,
2020
, “
Influence of Prandtl Number on Bifurcation and Pattern Variation of Non-Isothermal Annular Poiseuille Flow
,”
Phys. Fluids
,
32
(
11
), p.
114101
.10.1063/5.0021104
54.
Garg
,
V.
, and
Rouleau
,
W.
,
1972
, “
Linear Spatial Stability of Pipe Poiseuille Flow
,”
J. Fluid Mech.
,
54
(
1
), pp.
113
127
.10.1017/S0022112072000564
55.
Falsaperla
,
P.
,
Mulone
,
G.
, and
Perrone
,
C.
,
2022
, “
Energy Stability of Plane Couette and Poiseuille Flows: A Conjecture
,”
Eur. J. Mech. B
,
93
, pp.
93
100
.10.1016/j.euromechflu.2022.01.006
56.
Chandrasekhar
,
S.
,
1961
, “
Hydrodynamic and Hydromagnetic Stability
,”
Oxford University Press, London, UK.
10.1017/S0022112062210592
57.
Taylor
,
G. I.
,
1923
, “VIII. Stability of a Viscous Liquid Contained Between Two Rotating Cylinders,”
Philos. Trans. R. Soc. London A
,
223
(605–615), pp.
289
343
.10.1098/rsta.1923.0008
You do not currently have access to this content.