Abstract

The novelty of this paper is the investigation of numerical study of a mathematical model, which deals with time-dependent heat flow in elliptic fin (dry, wet, and partially wet). In this paper, we developed a nonlinear model of second-order heat equations in unsteady state condition. A new iterative Broyden Legendre Wavelet Galerkin Finite Element Method (BLWGFEM) is used for the solution. The central difference approximation used for discretization of second order derivatives and then utilization of Hadamard, Khatri Rao and Face splitting matrices product with Legendre Wavelet Galerkin Method transfers our main problem into system of nonlinear algebraic equations. The iterative Broyden Method provides the solution for this system. In a particular case, present solution is compared with the exact solution and is approximately the same. Effect of different parameters such as Biot number, Latent heat, Kirpichev number, Fin thickness, Axis ratio, μ, η, and ξ on the temperature distribution are discussed in detail.

References

1.
Hanin
,
L.
, and
Campo
,
A.
,
2003
, “
A New Minimum Volume Straight Cooling Fin Taking Into Account the “Length of Arc
,”
Int. J. Heat Mass Transfer
,
46
(
26
), pp.
5145
5152
.10.1016/S0017-9310(03)00355-7
2.
Zhang
,
H.
,
Wang
,
E.
, and
Fan
,
B.
,
2013
, “
Heat Transfer Analysis of a Finned-Tube Evaporator for Engine Exhaust Heat Recovery
,”
Energy Convers. Manag.
,
65
(
1
), pp.
438
447
.10.1016/j.enconman.2012.09.017
3.
Kundu
,
B.
, and
Das
,
P.
,
2002
, “
Performance Analysis and Optimization of Straight Taper Fins With Variable Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4739
4751
.10.1016/S0017-9310(02)00189-8
4.
Lorenzini
,
G.
,
Biserni
,
C.
,
Silva Diaz Estrada
,
E.
,
Domingues Dos Santos
,
E.
,
André Isoldi
,
L.
, and
Oliveira Rocha
,
L. A.
,
2014
, “
Genetic Algorithm Applied to Geometric Optimization of Isothermal y-Shaped Cavities
,”
ASME J. Electron. Packag.
,
136
(
3
), pp.
031011
031020
.10.1115/1.4027421
5.
Uzol
,
O.
, and
Camci
,
C.
,
2005
, “
Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
5
), pp.
458
471
.10.1115/1.1860563
6.
Kundu
,
B.
, and
Das
,
P.
,
2007
, “
Performance Analysis and Optimization of Elliptic Fins Circumscribing a Circular Tube
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
173
180
.10.1016/j.ijheatmasstransfer.2006.06.043
7.
Lin
,
C.-N.
, and
Jang
,
J.-Y.
,
2002
, “
A Two-Dimensional Fin Efficiency Analysis of Combined Heat and Mass Transfer in Elliptic Fins
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3839
3847
.10.1016/S0017-9310(02)00086-8
8.
Papadopoulos
,
P.
, and
Hatzikonstantinou
,
P.
,
2007
, “
Numerical Investigation of the Thermally Developing Flow in a Curved Elliptic Duct With Internal Fins
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
6
), pp.
759
762
.10.1115/1.2717254
9.
Li
,
P.
, and
Kim
,
K.-Y.
,
2008
, “
Multiobjective Optimization of Staggered Elliptical Pin-Fin Arrays
,”
Numer. Heat Transfer, Part A
,
53
(
4
), pp.
418
431
.10.1080/10407780701632759
10.
Emery
,
A.
, and
Bardot
,
D.
,
2007
, “
Stochastic Heat Transfer in Fins and Transient Cooling Using Polynomial Chaos and Wick Products
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
9
), pp.
1127
1133
.10.1115/1.2739586
11.
Roy
,
R.
, and
Ghosal
,
S.
,
2017
, “
Homotopy Perturbation Method for the Analysis of Heat Transfer in an Annular Fin With Temperature-Dependent Thermal Conductivity
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
2
), pp.
022001
022009
.10.1115/1.4034811
12.
Kundu
,
B.
, and
Das
,
P.
,
2004
, “
Performance and Optimization Analysis for Fins of Straight Taper With Simultaneous Heat and Mass Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
5
), pp.
862
868
.10.1115/1.1798911
13.
Adegun
,
I.
,
Jolayemi
,
T.
,
Olayemi
,
O.
, and
Adebisi
,
A.
,
2018
, “
Numerical Simulation of Forced Convective Heat Transfer in Inclined Elliptic Ducts With Multiple Internal Longitudinal Fins
,”
Alex. Eng. J.
,
57
(
4
), pp.
2485
2496
.10.1016/j.aej.2017.01.014
14.
Razera
,
A.
,
da Fonseca
,
R.
,
Isoldi
,
L.
,
dos Santos
,
E.
,
Rocha
,
L.
, and
Biserni
,
C.
,
2018
, “
Constructal Design of a Semi-Elliptical Fin Inserted in a Lid-Driven Square Cavity With Mixed Convection
,”
Int. J. Heat Mass Transfer
,
126
(
11
), pp.
81
94
.10.1016/j.ijheatmasstransfer.2018.05.157
15.
Hosseini
,
S. S.
,
Ramiar
,
A.
, and
Ranjbar
,
A. A.
,
2018
, “
Numerical Investigation of Natural Convection Solar Air Heater With Different Fins Shape
,”
Renewable Energy
,
117
(
4
), pp.
488
500
.10.1016/j.renene.2017.10.052
16.
Rajab
,
H.
,
Yin
,
D.
, and
Ma
,
H.
,
2017
, “
Numerical Analysis of Effects of Nanofluid and Angular Orientation on Heat Transfer Performance of an Elliptical Pin-Fin Heat Sink
,”
Heat Transfer Res.
,
48
(
2
), pp.
161
175
.10.1615/HeatTransRes.2016011084
17.
Feng
,
S.
,
Kim
,
T.
, and
Lu
,
T.
,
2010
, “
A Semi-Empirical Heat Transfer Model for Forced Convection in Pin-Fin Heat Sinks Subjected to Nonuniform Heating
,”
ASME Heat Transfer Res.
,
132
(
12
), pp.
121702
121713
.10.1115/1.4002285
18.
Rajabifar
,
B.
,
Seyf
,
H. R.
,
Zhang
,
Y.
, and
Khanna
,
S. K.
,
2016
, “
Flow and Heat Transfer in Micro Pin Fin Heat Sinks With Nano-Encapsulated Phase Change Materials
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
138
(
6
), pp.
062401
062409
.10.1115/1.4032834
19.
Seyf
,
H. R.
, and
Layeghi
,
M.
,
2010
, “
Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
7
), pp.
071401
071410
.10.1115/1.4000951
20.
Matos
,
R.
,
Vargas
,
J.
,
Laursen
,
T.
, and
Saboya
,
F.
,
2001
, “
Optimization Study and Heat Transfer Comparison of Staggered Circular and Elliptic Tubes in Forced Convection
,”
Int. J. Heat Mass Transfer
,
44
(
20
), pp.
3953
3961
.10.1016/S0017-9310(01)00006-0
21.
Kundu
,
B.
,
Maiti
,
B.
, and
Das
,
P.
,
2006
, “
Performance Analysis of Plate Fins Circumscribing Elliptic Tubes
,”
Heat Transfer Eng.
,
27
(
3
), pp.
86
94
.10.1080/01457630500458856
22.
Darvishi
,
M.
,
Gorla
,
R. S. R.
, and
Khani
,
F.
,
2014
, “
Unsteady Thermal Response of a Porous Fin Under the Influence of Natural Convection and Radiation
,”
Heat Mass Transfer
,
50
(
9
), pp.
1311
1317
.10.1007/s00231-014-1341-1
23.
Pasha
,
A.
,
Jalili
,
P.
, and
Ganji
,
D.
,
2018
, “
Analysis of Unsteady Heat Transfer of Specific Longitudinal Fins With Temperature-Dependent Thermal Coefficients by DTM
,”
Alex. Eng. J.
,
57
(
4
), pp.
3509
3521
.10.1016/j.aej.2017.11.019
24.
SchwäNen
,
M.
, and
Duggleby
,
A.
,
2009
, “
Identifying Inefficiencies in Unsteady Pin Fin Heat Transfer
,”
ASME
Paper No. GT2009-60219.10.1115/GT2009-60219
25.
Purwadi
,
P. K.
, and
Seen
,
M.
,
2202
, “
Efficiency and Effectiveness of a Fin Having the Capsule-Shaped Cross Section in the Unsteady State
,”
AIP Conf. Proc.
,
2202
(
1
), pp.
020092
020098
.10.1063/1.5141705
26.
Purwadi
,
P. K.
,
Setyahandana
,
B.
,
Harsilo
,
R.
, and
Department of Mechanical Engineering, Faculty of Science and Technology, Sanata Dharma University, Yogyakarta, Indonesia
,
2021
, “
Obtaining the Efficiency and Effectiveness of Fin in Unsteady State Conditions Using Explicit Finite Difference Method
,”
Int. J. Adv. Sci. Technol.
,
03
(
01
), pp.
111
124
.10.24071/ijasst.v3i1.3280
27.
Purwadi
,
P. K.
, and
Seen
,
M.
,
2020
, “
The Efficiency and Effectiveness of Fins Made From Two Different Materials in Unsteady-State
,”
J. Phys.: Conf. Ser.
,
1511
(
1
), pp.
012082
012089
.10.1088/1742-6596/1511/1/012082
28.
Nugroho
,
T. D.
, and
Purwadi
,
P.
,
1788
, “
Fins Effectiveness and Efficiency With Position Function of Rhombus Sectional Area in Unsteady Condition
,”
AIP Conf. Proc.
,
1788
(
1
), pp.
030034
030040
.10.1063/1.4968287
29.
Sowmya
,
G.
,
Gireesha
,
B.
, and
Berrehal
,
H.
,
2021
, “
An Unsteady Thermal Investigation of a Wetted Longitudinal Porous Fin of Different Profiles
,”
J. Therm. Anal. Calorim.
,
143
(
3
), pp.
2463
2474
.10.1007/s10973-020-09963-7
30.
Bouzari
,
S.
, and
Ghazanfarian
,
J.
,
2017
, “
Unsteady Forced Convection Over Cylinder With Radial Fins in Cross Flow
,”
Appl. Therm. Eng.
,
112
(
3
), pp.
214
225
.10.1016/j.applthermaleng.2016.10.052
31.
Sadeghi
,
H. M.
,
Mohammadpour
,
M.
,
Babayan
,
M.
,
Sojoudi
,
A.
, and
Chamkha
,
A. J.
,
2020
, “
Unsteady Natural Convection of Water Adjacent to the Sidewall of a Differentially Heated Cavity With Multiple Fins
,”
Int. Commun. Heat Mass Transfer
,
116
(
7
), p.
104642
.10.1016/j.icheatmasstransfer.2020.104642
32.
Kaur
,
H.
,
Rai
,
K.
, and
Upadhyay
,
S.
,
2022
, “
A Numerical Study of Moving Boundary Problem Involving Dual Phase Lag Model of Heat Mass Transfer During Immersion Frying
,”
Math. Comput. Simul.
,
202
, pp.
79
100
.10.1016/j.matcom.2022.05.025
33.
Upadhyay
,
S.
, and
Rai
,
K.
, “
A New Iterative Least Square Chebyshev Wavelet Galerkin Fem Applied to Dual Phase Lag Model on Microwave Drying of Foods
,”
Int. J. Therm. Sci.
,
139
(
5
), pp.
217
231
.10.1016/j.ijthermalsci.2019.01.035
34.
Upadhyay
,
S.
,
Singh
,
V. K.
, and
Rai
,
K.
,
2019
, “
Finite Difference Legendre Wavelet Collocation Method Applied to the Study of Heat Mass Transfer During Food Drying
,”
Heat Transfer Res.
,
48
(
7
), pp.
3079
3100
.10.1002/htj.21531
35.
Singh
,
S.
,
Kumar
,
D. N.
, and
Rai
,
K.
,
2015
, “
Wavelet Collocation Solution of Non-Linear Fin Problem With Temperature Dependent Thermal Conductivity and Heat Transfer Coefficient
,”
Int. J. Nonlinear Anal. Appl.
,
6
(
1
), pp.
105
118
.10.22075/ijnaa.2015.222
36.
Singh
,
S.
,
Kumar
,
D.
, and
Rai
,
K.
,
2014
, “
Convective-Radiative Fin With Temperature Dependent Thermal Conductivity, Heat Transfer Coefficient and Wavelength Dependent Surface Emissivity
,”
Propuls. Power Res.
,
3
(
4
), pp.
207
221
.10.1016/j.jppr.2014.11.003
37.
Singh
,
S.
,
Kumar
,
D.
, and
Rai
,
K.
,
2013
, “
Wavelet Collocation Solution for Convective-Radiative Continuously Moving Fin With Temperature-Dependent Thermal Conductivity
,”
Int. J. Eng. Adv. Technol.
,
2
(
4
), pp.
10
16
.https://www.ijeat.org/wpcontent/uploads/papers/v2i4/D1240042413.pdf
38.
Oguntala
,
G.
,
Abd-Alhameed
,
R.
,
Sobamowo
,
G.
, and
Danjuma
,
I.
,
2018
, “
Performance, Thermal Stability and Optimum Design Analyses of Rectangular Fin With Temperature-Dependent Thermal Properties and Internal Heat Generation
,”
J. Comput. Appl. Mech.
,
49
(
1
), pp.
37
43
.10.22059/jcamech.2017.244988.203
39.
Singh
,
S.
,
Upadhyay
,
S.
, and
Rai
,
K.
,
2014
, “
Comparative Analysis of Power-Law Type Fin Problem Using Wavelet Collocation and Galerkin Methods
,”
Int. J. Appl. Math. Res.
,
3
(
4
), pp.
534
546
.10.14419/ijamr.v3i4.3137
40.
Lin
,
J.-H.
,
Chen
,
C.-K.
, and
Yang
,
Y.-T.
,
2000
, “
The Inverse Estimation of the Thermal Boundary Behavior of a Heated Cylinder Normal to a Laminar Air Stream
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3991
4001
.10.1016/S0017-9310(00)00022-3
41.
Lin
,
J.-H.
,
Chen
,
C.-K.
, and
Yang
,
Y.-T.
,
2002
, “
An Inverse Method for Simultaneous Estimation of the Center and Surface Thermal Behavior of a Heated Cylinder Normal to a Turbulent Air Stream
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
4
), pp.
601
608
.10.1115/1.1473140
42.
Huang
,
C.-H.
,
Yuan
,
I.-C.
, and
Ay
,
H.
,
2003
, “
A Three-Dimensional Inverse Problem in Imaging the Local Heat Transfer Coefficients for Plate Finned-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3629
3638
.10.1016/S0017-9310(03)00157-1
43.
Chen
,
H.-T.
,
Song
,
J.-P.
, and
Wang
,
Y.-T.
,
2005
, “
Prediction of Heat Transfer Coefficient on the Fin Inside One-Tube Plate Finned-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2697
2707
.10.1016/j.ijheatmasstransfer.2005.01.035
44.
Razzaghi
,
M.
, and
Yousefi
,
S.
,
2000
, “
Legendre Wavelets Direct Method for Variational Problems
,”
Math. Comput. Simul.
,
53
(
3
), pp.
185
192
.10.1016/S0378-4754(00)00170-1
45.
Razzaghi
,
M.
, and
Yousefi
,
S.
,
2001
, “
The Legendre Wavelets Operational Matrix of Integration
,”
Int. J. Syst. Sci.
,
32
(
4
), pp.
495
502
.10.1080/00207720120227
46.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
2012
,
Matrix Analysis
,
Cambridge University Press
, New York.
47.
Henderson
,
H. V.
,
Pukelsheim
,
F.
, and
Searle
,
S. R.
,
1983
, “
On the History of the Kronecker Product
,”
Linear Multilinear Algebra
,
14
(
2
), pp.
113
120
.10.1080/03081088308817548
48.
Khatri
,
C.
, and
Rao
,
C. R.
,
1968
, “
Solutions to Some Functional Equations and Their Applications to Characterization of Probability Distributions
,”
Sankhya: Indian J. Stat. Ser. A
,
30
(
2
), pp.
167
180
.https://www.jstor.org/stable/25049527
49.
Esteve
,
A.
,
Boj
,
E.
, and
Fortiana
,
J.
,
2009
, “
Interaction Terms in Distance-Based Regression
,”
Commun. Stat. Theory Methods
,
38
(
19
), pp.
3498
3509
.10.1080/03610920802592860
50.
Nemati
,
H.
, and
Samivand
,
S.
,
2015
, “
Performance Optimization of Annular Elliptical Fin Based on Thermo-Geometric Parameters
,”
Alex. Eng. J.
,
54
(
4
), pp.
1037
1042
.10.1016/j.aej.2015.09.016
51.
Jang
,
J.-Y.
,
Wu
,
M.-C.
, and
Chang
,
W.-J.
,
1996
, “
Numerical and Experimental Studies of Three-dimensional Plate-Fin and Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
3057
3066
.10.1016/0017-9310(95)00341-X
52.
Liu
,
X.
,
Yu
,
J.
, and
Yan
,
G.
, “
A Numerical Study on the Air-Side Heat Transfer of Perforated Finned-Tube Heat Exchangers With Large Fin Pitches
,”
Int. J. Heat Mass Transfer
,
100
(
9
), pp.
199
207
.10.1016/j.ijheatmasstransfer.2016.04.081
53.
Hatami
,
M.
, and
Ganji
,
D.
, “
Investigation of Refrigeration Efficiency for Fully Wet Circular Porous Fins With Variable Sections by Combined Heat and Mass Transfer Analysis
,”
Int. J. Refrig.
,
40
(
4
), pp.
140
151
.10.1016/j.ijrefrig.2013.11.002
54.
Sciacovelli
,
A.
,
Gagliardi
,
F.
, and
Verda
,
V.
,
2015
, “
Maximization of Performance of a PCM Latent Heat Storage System With Innovative Fins
,”
Appl. Energy
,
137
(
1
), pp.
707
715
.10.1016/j.apenergy.2014.07.015
55.
Das
,
R.
, and
Kundu
,
B.
, “
Direct and Inverse Approaches for Analysis and Optimization of Fins Under Sensible and Latent Heat Load
,”
Int. J. Heat Mass Transfer
,
124
(
9
), pp.
331
343
.10.1016/j.ijheatmasstransfer.2018.03.059
56.
Almsater
,
S.
,
Saman
,
W.
, and
Bruno
,
F.
,
2016
, “
Performance Enhancement of High Temperature Latent Heat Thermal Storage Systems Using Heat Pipes With and Without Fins for Concentrating Solar Thermal Power Plants
,”
Renew. Energy
,
89
(
6
), pp.
36
50
.10.1016/j.renene.2015.11.068
57.
Chaurasiya
,
V.
,
Kumar
,
D.
,
Rai
,
K.
, and
Singh
,
J.
,
2020
, “
A Computational Solution of a Phase-Change Material in the Presence of Convection Under the Most Generalized Boundary Condition
,”
Therm. Sci. Eng. Prog.
,
20
, p.
100664
.10.1016/j.tsep.2020.100664
You do not currently have access to this content.