The work presented in this paper focuses on the effect of jet pulsation on the heat transfer and fluid dynamics characteristics of single and double jet impingement on a constant heat flux heated surface. Specifically, the influence of frequency, amplitude and in particular, of the phase difference of the two jets on the temperature distribution of the heated surface is examined. The simulations are conducted using a novel, remeshed Smooth Particle Hydrodynamics (SPH) methodology that is based on particle discretization of the governing compressible Navier-Stokes equations. It was found that the strong aerodynamic and thermal interaction that exists between the gaseous jets and the impingement surface leads to non-linear system responses; with serious heat transfer implications. Dynamical systems analysis leads to the identification of intermittent periodic/chaotic behavior above a threshold value of the Reynolds number. As a result, a reduction in the maximum plate temperature in a window of periodic behavior was discovered.

1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.
2.
Polat
,
S.
,
Huang
,
B.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
,
1989
, “
Numerical Flow and Heat Transfer under Impinging Jets: A Review
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
,
2
, pp.
157
197
.
3.
Viskanta
,
R.
,
1993
, “
Heat-Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
4.
Lienhard
,
V. J. H.
,
1995
, “
Liquid Jet Impingement
,”
Annu. Rev. Heat Transfer
,
6
, pp.
199
270
.
5.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1966
, “
Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets
,”
J. Heat Transfer
,
88
, pp.
101
108
.
6.
Donaldso
,
C. D.
,
Snedeker
,
R. S.
, and
Margolis
,
D. P.
,
1971
, “
Study of Free Jet Impingement: 2. Free Jet Turbulent Structure and Impingement Heat Transfer
,”
J. Fluid Mech.
,
45
, pp.
477
512
.
7.
Metzger
,
D. E.
, and
Korstad
,
R. J.
,
1972
, “
Effects of Crossflow on Impingement Heat-Transfer
,”
Journal of Engineering for Power-Transactions of the ASME
,
94
(
1
), pp.
35
35
.
8.
Sparrow
,
E. M.
, and
Wong
,
T. C.
,
1975
, “
Impingement Transfer Coefficients Due to Initially Laminar Slot Jets
,”
Int. J. Heat Mass Transf.
,
18
, pp.
597
605
.
9.
Sparrow
,
E. M.
, and
Lee
,
L.
,
1975
, “
Analysis of Flow Field and Impingement Heat-Mass Transfer Due to a Nonuniform Slot Jet
,”
Journal of Heat Transfer transactions of the ASME
,
97
(
2
), pp.
191
197
.
10.
Saad
,
N. R.
,
Douglas
,
W. J. M.
, and
Mujumdar
,
A. S.
,
1977
, “
Prediction of Heat-Transfer Under an Axisymmetric Laminar Impinging Jet
,”
Ind. Eng. Chem. Fundam.
,
16
(
1
), pp.
148
154
.
11.
Hollworth
,
B. R.
, and
Berry
,
R. D.
,
1978
, “
Heat-Transfer From Arrays of Impinging Jets With Large Jet-to-Jet Spacing
,”
Journal of Heat Transfer-Transactions of the ASME
,
100
(
2
), pp.
352
357
.
12.
Kataoka
,
K.
,
Ase
,
H.
, and
Sako
,
N.
,
1988
, “
Unsteady Aspects of Large-Scale Coherent Structures and Impingement Heat-Transfer in Round Air Jets With and Without Controlled Excitation
,”
International Journal of Engineering Fluid Mechanics
,
1
(
3
), pp.
365
382
.
13.
Eibeck
,
P. A.
,
Keller
,
J. O.
,
Bramlette
,
T. T.
, and
Sailor
,
D. J.
,
1993
, “
Pulse Combustion—Impinging Jet Heat-Transfer Enhancement
,”
Combust. Sci. Technol.
,
94
(
1–6
), pp.
147
165
.
14.
Zumbrunnen
,
D. A.
, and
Aziz
,
M.
,
1993
, “
Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet
,”
Journal of Heat Transfer-Transactions of the ASME
,
115
(
1
), pp.
91
98
.
15.
Azevedo
,
L. F. A.
,
Webb
,
B. W.
, and
Queiroz
,
M.
,
1994
, “
Pulsed Air-Jet Impingement Heat-Transfer
,”
Exp. Therm. Fluid Sci.
,
8
(
3
), pp.
206
213
.
16.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1994
, “
Nonlinear Dynamics of Laminar Boundary-Layers in Pulsatile Stagnation Flows
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
514
523
.
17.
Sheriff
,
H. S.
, and
Zumbrunnen
,
D. A.
,
1994
, “
Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet
,”
Journal of Heat Transfer-Transactions of the ASME
,
116
(
4
), pp.
886
895
.
18.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1995
, “
Dependence of Heat-Transfer to a Pulsating Stagnation Flow on Pulse Characteristics
,”
J. Thermophys. Heat Transfer
,
9
,(
1
), pp.
181
192
.
19.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1997
, “
Local Convective Heat Transfer to Submerged Pulsating Jets
,”
Int. J. Heat Mass Transf.
,
40
(
14
), pp.
3305
3321
.
20.
Sailor
,
D. J.
,
Rohli
,
D. J.
, and
Fu
,
Q. L.
,
1999
, “
Effect of Variable Duty Cycle Flow Pulsations on Heat Transfer Enhancement for an Impinging Air Jet
,”
Int. J. Heat Mass Transf.
,
20
(
6
), pp.
574
580
.
21.
Sheriff
,
H. S.
, and
Zumbrunnen
,
D. A.
,
1999
, “
Local and Instantaneous Heat Transfer Characteristics of Arrays of Pulsating Jets
,”
Journal of Heat Transfer-Transactions of the ASME
,
121
(
2
), pp.
341
348
.
22.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
2000
, “
Alterations to Coherent Flow Structures and Heat Transfer Due to Pulsations in an Impinging Air-Jet
,”
Int. J. Therm. Sci.
,
39
(
2
), pp.
236
248
.
23.
Haneda
,
Y.
,
Tsuchiya
,
Y.
,
Nakabe
,
K.
, and
Suzuki
,
K.
,
1998
, “
Enhancement of Impinging Jet Heat Transfer by Making Use of Mechano-Fluid Interactive Flow Oscillation
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
115
124
.
24.
Chaniotis, A. K., and Poulikakos, D., 2001, “Modeling of Continuous and Intermitent Gas Jet Impingement and Heat Transfer on a Solid Surface,” Proc of ASME International Mechanical Engineering Congress and Exposition, New York.
25.
Zumbrunnen
,
D. A.
, and
Balasubramanian
,
M.
,
1995
, “
Convective Heat Transfer Enhancement Due to Gas Injection into an Impinging Liquid Jet
,”
Journal of Heat Transfer-Transactions of the ASME
,
117
(
4
), pp.
1011
1017
.
26.
Kee, R. J., Rupley, F. M., Meeks, E., and Miller, J. A., 1996, “Chemkin-Iii: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics,” Sandia Report SAND96-8216, Sandia National Laboratories, Livermore, CA.
27.
Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., and Miller, J. A., 1986, “A Fortran Computer Package for the Evaluation of Gas-Phase, Multicomponent Transport Properties,” Sandia Report SAND86-8246, Sandia National Laboratories, Livermore, CA.
28.
Thompson
,
K. W.
,
1987
, “
Time-Dependent Boundary-Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
,
68
(
1
), pp.
1
24
.
29.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary-Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
30.
Monaghan
,
J. J.
,
1985
, “
Particle Methods for Hydrodynamics
,”
Comput. Phys. Rep.
,
3
(
2
), pp.
71
124
.
31.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
, pp.
543
574
.
32.
Morris
,
J. P.
,
Fox
,
P. J.
, and
Zhu
,
Y.
,
1997
, “
Modeling Low Reynolds Number Incompressible Flows Using Sph
,”
J. Comput. Phys.
,
136
(
1
), pp.
214
226
.
33.
Bicknell
,
G. V.
,
1991
, “
The Equations of Motion of Particles in Smoothed Particle Hydrodynamics
,”
SIAM J. Sci. Comput. (USA)
,
12
(
5
), pp.
1198
1206
.
34.
Monaghan
,
J. J.
,
1988
, “
An Introduction to Sph
,”
Comput. Phys. Commun.
,
48
(
1
), pp.
89
96
.
35.
Takeda
,
H.
,
Miyama
,
S. M.
, and
Sekiya
,
M.
,
1994
, “
Numerical-Simulation of Viscous-Flow by Smoothed Particle Hydrodynamics
,”
Prog. Theor. Phys.
,
92
(
5
), pp.
939
960
.
36.
Monaghan
,
J. J.
, and
Kocharyan
,
A.
,
1995
, “
Sph Simulation of Multiphase Flow
,”
Comput. Phys. Commun.
,
87
(
1–2
), pp.
225
235
.
37.
Chaniotis
,
A. K.
,
Poulikakos
,
D.
, and
Koumoutsakos
,
P.
,
2002
, “
Remeshed Smoothed Particle Hydrodynamics for the Simulation of Viscous and Heat Conducting Flows
,”
J. Comput. Phys.
,
182
(
1
), pp.
67
90
.
38.
Hockney, R. W., and Eastwood, J. W., 1988, Computer Simulation Using Particles, Institute of Physics Publishing, Bristol.
39.
Koumoutsakos
,
P.
,
1997
, “
Inviscid Axisymmetrization of an Elliptical Vortex
,”
J. Comput. Phys.
,
138
(
2
), pp.
821
857
.
40.
Cottet, G. H., and Koumoutsakos, P. D., 2000, Vortex Methods, Cambridge University Press, London.
41.
Byrne, G. D., 1992, Pragmatic Experiments with Krylov Methods in the Stiff Ode Setting, Oxford Univ. Press.
42.
Brown
,
P. N.
,
Byrne
,
G. D.
, and
Hindmarsh
,
A. C.
,
1989
, “
Vode—A Variable-Coefficient Ode Solver
,”
SIAM J. Sci. Comput. (USA)
,
10
(
5
), pp.
1038
1051
.
43.
Panton, R. L., 1984, Incompressible Flow, Wiley, New York.
44.
Kantz, H., and Schreiber, T., 1997, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge.
45.
Feigenbaum
,
M. J.
,
1983
, “
Universal Behavior in Non-Linear Systems
,”
Physica D
,
7
(
1–3
), pp.
16
39
.
46.
Libchaber
,
A.
,
Laroche
,
C.
, and
Fauve
,
S.
,
1982
, “
Period Doubling Cascade in Mercury, a Quantitative Measurement
,”
J. Phys. (France), Lett.
,
43
(
7
), pp.
L211–L216
L211–L216
.
47.
Pulliam
,
T. H.
, and
Vastano
,
J. A.
,
1993
, “
Transition to Choas in an Open Unforced 2-D Flow
,”
J. Comput. Phys.
,
105
(
1
), pp.
133
149
.
48.
Thompson, J. M. T., and Steward, H. B., 1986, Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists, John Wiley and Sons, Chichester.
49.
Arneodo
,
A.
,
Coullet
,
P.
,
Tresser
,
C.
,
Libchaber
,
A.
,
Maurer
,
J.
, and
Dhumieres
,
D.
,
1983
, “
On the Observation of an Uncompleted Cascade in a Rayleigh-Benard Experiment
,”
Physica D
,
6
(
3
), pp.
385
392
.
50.
Yoo
,
J. S.
, and
Han
,
S. M.
,
2000
, “
Transitions and Chaos in Natural Convection of a Fluid with Pr=0.1 in a Horizontal Annulus
,”
Fluid Dyn. Res.
,
27
(
4
), pp.
231
245
.
51.
Pomeau
,
Y.
, and
Manneville
,
P.
,
1980
, “
Intermittent Transition to Turbulence in Dissipative Dynamical-Systems
,”
Commun. Math. Phys.
,
74 pp.
(
2
), pp.
189
197
.
You do not currently have access to this content.