Abstract

Accurate orientation estimation is a key challenge in dynamics and control, particularly for rigid body motion. Quaternions are commonly used to represent rotations due to their computational efficiency, but they must always maintain a unit norm to function correctly. If this constraint is not enforced properly, it can lead to significant errors in orientation estimation. This article proposes an unscented Kalman filter that ensures the quaternion parameters, a subvector within the state vector, adhere to the unit norm constraint. The proposed method provides a closed-form solution without dividing the state vector into constrained and unconstrained vectors. In simulation studies under high-noise conditions, the filter demonstrates significantly improved performance compared to standard unscented and pseudo-unscented Kalman filters, enhancing accuracy during both transient and steady-state phases. These results highlight the importance of enforcing quaternion constraints to reduce mean square error and improve convergence.

References

1.
Afshari
,
H. H.
,
Gadsden
,
S. A.
, and
Habibi
,
S.
,
2017
, “
Gaussian Filters for Parameter and State Estimation: A General Review of Theory and Recent Trends
,”
Signal Process.
,
135
(
1
), pp.
218
238
.
2.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
,
1979
,
Optimal Filtering
,
Courier Corporation
,
North Chelmsford, MA
.
3.
Kailath
,
T.
,
Sayed
,
A. H.
, and
Hassibi
,
B.
,
1999
,
Linear Estimation
,
Prentice-Hall
,
Upper Saddle River, NJ
.
4.
Ellis
,
G.
,
2012
, “Using The Luenberger Observer in Motion Control,”
Control System Design Guide
,
G.
Ellis
, ed.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
407
429
.
5.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic. Eng.
,
82
(
1
), pp.
35
45
.
6.
Sasiadek
,
J.
, and
Hartana
,
P.
,
2000
, “
Sensor Data Fusion Using Kalman Filter
,”
Proceedings of the Third International Conference on Information Fusion
,
Paris, France
,
July 10–13
, Vol. 2, IEEE, pp. WED5–WED19.
7.
Safari
,
S.
,
Shabani
,
F.
, and
Simon
,
D.
,
2014
, “
Multirate Multisensor Data Fusion for Linear Systems Using Kalman Filters and a Neural Network
,”
Aerosp. Sci. Technol.
,
39
(
1
), pp.
465
471
.
8.
Tang
,
J.
,
Dourra
,
H.
, and
Zhu
,
G.
,
2023
, “
Tire-Road Friction Coefficient Estimation Based on Fusion of Model- and Data-Based Methods
,”
ASME Lett. Dyn. Syst. Control
,
3
(
1
), p.
011006
.
9.
Zakhariev
,
E.
,
2000
, “
Nonlinear Dynamics of Rigid and Flexible Multibody Systems
,”
Mech. Struct. Mach.
,
28
(
1
), pp.
105
136
.
10.
Pons
,
A.
, and
Cirak
,
F.
,
2023
, “
Quaternion Variational Integration for Inertial Maneuvering in a Biomimetic Unmanned Aerial Vehicle
,”
ASME Lett. Dyn. Syst. Control
,
3
(
1
), p.
011008
.
11.
Pushpalayam
,
N.
,
Alexander
,
L.
, and
Rajamani
,
R.
,
2023
, “
Non-Contacting Two-Dimensional Position Estimation Using an External Magnet and Monocular Computer Vision1
,”
ASME Lett. Dyn. Syst. Control
,
3
(
3
), p.
031005
.
12.
Gelb
,
A.
,
1974
,
Applied Optimal Estimation
,
MIT Press
,
Cambridge, MA
.
13.
Daum
,
F. E.
,
2021
,
Extended Kalman Filters
,
Springer International Publishing
,
Cham
, pp.
751
753
.
14.
Sung
,
K.
,
Peck
,
C.
, and
Majji
,
M.
,
2024
, “
Vision-Inertial Fusion for Enhanced Relative Navigation: Application of MEKF and Refined Template Matching for Target Identification
,”
ASME Lett. Dyn. Syst. Control
,
4
(
3
), p.
031008
.
15.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
1997
, “
New Extension of the Kalman Filter to Nonlinear Systems
,”
Proceedings of Signal Processing, Sensor Fusion, and Target Recognition VI
,
Orlando, FL
,
July 28
, vol. 3068, SPIE, pp.
182
193
.
16.
Wan
,
E. A.
, and
Van Der Merwe
,
R.
,
2000
, “
The Unscented Kalman Filter for Nonlinear Estimation
,”
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium
,
Lake Louise, Alberta, Canada
,
Oct. 4–6
, IEEE, pp.
153
158
.
17.
Kanatani
,
K.
,
1990
,
Representation of 3D Rotations
,
Springer
,
Berlin, Heidelberg
, pp.
197
235
.
18.
Tian
,
Y.
,
Compere
,
M.
, and
Drakunov
,
S.
,
2019
, “
A Quaternion-Based Sliding Mode Observer for Gyro-Bias Estimation and Attitude Reconstruction
,”
ASME International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 8–14
.
19.
Andrle
,
M.
, and
Crassidis
,
J.
,
2013
, “
Geometric Integration of Quaternions
,”
J. Guid. Control Dyn.
,
36
(
6
), pp.
1762
1767
.
20.
Betsch
,
P.
, and
Steinmann
,
P.
,
2001
, “
Constrained Integration of Rigid Body Dynamics
,”
Comput. Methods. Appl. Mech. Eng.
,
191
(
3–5
), pp.
467
488
.
21.
Rubin
,
M. B.
, and
Weiss
,
H.
,
2023
, “
Numerical Algorithm for Quaternion Integration Based on Three Independent Parameters With No Need for Re-normalization
,”
Acta Mech.
,
234
(
5
), pp.
2009
2020
.
22.
Zanetti
,
R.
,
Majji
,
M.
,
Bishop
,
R. H.
, and
Mortari
,
D.
,
2009
, “
Norm-Constrained Kalman Estimatoring
,”
J. Guid., Control, Dyn.
,
32
(
5
), pp.
1458
1465
.
23.
Yumbla
,
E. Q.
,
Li
,
D.
,
Nibi
,
T. M.
,
Aukes
,
D. M.
, and
Zhang
,
W.
,
2023
, “
A Kinematically Constrained Kalman Filter for Sensor Fusion in a Wearable Origami Robot
,”
ASME Lett. Dyn. Syst. Control
,
3
(
1
), p.
011005
.
24.
Koch
,
D. P.
,
Wheeler
,
D. O.
,
Beard
,
R. W.
,
McLain
,
T. W.
, and
Brink
,
K. M.
,
2020
, “
Relative Multiplicative Extended Kalman Filter for Observable GPS-Denied Navigation
,”
Int. J. Rob. Res.
,
39
(
9
), pp.
1085
1121
.
25.
Ge
,
Y.
,
Van Goor
,
P.
, and
Mahony
,
R.
,
2023
, “
A Note on the Extended Kalman Filter on a Manifold
,”
62nd IEEE Conference on Decision and Control (CDC)
,
Singapore
,
Dec. 13–15
, pp.
7687
7694
.
26.
Lefferts
,
E. J.
,
Markley
,
F. L.
, and
Shuster
,
M. D.
,
1982
, “
Kalman Estimatoring for Spacecraft Attitude Estimation
,”
AIAA J. Guid. Control Dyn.
,
5
(
5
), pp.
417
429
.
27.
Simon
,
D.
, and
Chia
,
T. L.
,
2002
, “
Kalman Estimatoring With State Equality Constraints
,”
IEEE Trans. Aerosp. Electron. Syst.
,
38
(
1
), pp.
128
136
.
28.
Andersson
,
L. E.
,
Imsland
,
L.
,
Brekke
,
E. F.
, and
Scibilia
,
F.
,
2019
, “
On Kalman Estimatoring With Linear State Equality Constraints
,”
Automatica
,
101
(
1
), pp.
467
470
.
29.
Tugnait
,
J.
,
1985
, “
Constrained Signal Restoration Via Iterated Extended Kalman Estimatoring
,”
IEEE Trans. Acoust. Speech Signal Process.
,
33
(
2
), pp.
472
475
.
30.
Geeter
,
J. D.
,
Brussel
,
H. V.
,
Schutter
,
J. D.
, and
Decreton
,
M.
,
1997
, “
A Smoothly Constrained Kalman Estimator
,”
IEEE. Trans. Pattern. Anal. Mach. Intell.
,
19
(
10
), pp.
1171
1177
.
31.
Bell
,
B. M.
,
Burke
,
J. V.
, and
Pillonetto
,
G.
,
2009
, “
An Inequality Constrained Nonlinear Kalman–Bucy Smoother by Interior Point Likelihood Maximization
,”
Automatica
,
45
(
1
), pp.
25
33
.
32.
Tanaka
,
T.
,
Zinage
,
V.
,
Ugrinovskii
,
V.
, and
Skoglund
,
M.
,
2024
, “
Continuous-Time Channel Gain Control for Minimum-Information Kalman-Bucy Filtering
,”
IEEE. Trans. Automat. Contr.
,
69
(
10
), pp.
7255
7262
.
33.
Carmi
,
A.
,
Gurfil
,
P.
, and
Kanevsky
,
D.
,
2010
, “
Methods for Sparse Signal Recovery Using Kalman Estimatoring With Embedded Pseudo-Measurement Norms and Quasi-Norms
,”
IEEE Trans. Signal Process.
,
58
(
4
), pp.
2405
2409
.
34.
Zhou
,
G.
,
Li
,
K.
,
Chen
,
X.
,
Wu
,
L.
, and
Kirubarajan
,
T.
,
2018
, “
State Estimation With a Destination Constraint Using Pseudo-Measurements
,”
Signal Process.
,
145
(
1
), pp.
155
166
.
35.
Lee
,
J.
,
Jeon
,
T.
, and
Jung
,
W.
,
2020
, “
Constraint-Augmented Kalman Estimator for Magnetometer-Free 3d Joint Angle Determination
,”
Int. J. Control Autom. Syst.
,
18
(
11
), pp.
2929
2942
.
36.
Chee
,
S. A.
, and
Forbes
,
J. R.
,
2014
, “
Norm-Constrained Consider Kalman Estimatoring
,”
J. Guid. Control Dyn.
,
37
(
6
), pp.
2048
2053
.
37.
Chee
,
S. A.
, and
Forbes
,
J. R.
,
2016
, “
Norm-Constrained Unscented Kalman Filter With Application to High Area-to-Mass Ratio Space-Debris Tracking
,”
AIAA Guidance, Navigation, and Control Conference
,
San Diego, CA
,
Jan. 4–8
.
38.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1985
,
Matrix Analysis
,
Cambridge University Press
,
Cambridge, UK
.
39.
Strang
,
G.
,
2009
,
Introduction to Linear Algebra
,
Wellesley-Cambridge Press
,
Wellesley, MA
.
40.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2013
,
Matrix Computations
,
JHU Press
,
Baltimore, MD
.
You do not currently have access to this content.