A study is carried out to design and optimize Chemical Vapor Deposition (CVD) systems for material fabrication. Design and optimization of the CVD process is necessary to satisfying strong global demand and ever increasing quality requirements for thin film production. Advantages of computer aided optimization include high design turnaround time, flexibility to explore a larger design space and the development and adaptation of automation techniques for design and optimization. A CVD reactor consisting of a vertical impinging jet at atmospheric pressure, for growing titanium nitride films, is studied for thin film deposition. Numerical modeling and simulation are used to determine the rate of deposition and film uniformity over a wide range of design variables and operating conditions. These results are used for system design and optimization. The optimization procedure employs an objective function characterizing film quality, productivity and operational costs based on reactor gas flow rate, susceptor temperature and precursor concentration. Parameter space mappings are used to determine the design space, while a minimization algorithm, such as the steepest descent method, is used to determine optimal operating conditions for the system. The main features of computer aided design and optimization, using these techniques, are discussed in detail.

1.
Mahajan
,
R. L.
,
1996
, “
Transport Phenomena in Chemical Vapor-Deposition Systems
,”
Adv. Math.
,
28
, pp.
339
425
, Academic Press, Inc.
2.
Jensen
,
K. F.
,
Einset
,
E. O.
, and
Fotiadis
,
D. I.
,
1991
, “
Flow Phenomena in Chemical Vapor Deposition of Thin Films
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
197
232
.
3.
Mouche
,
M.-J.
,
Mermet
,
J.-L.
,
Pires
,
F.
,
Richard
,
E.
,
Torres
,
J.
,
Palleau
,
J.
, and
Braud
,
F.
,
1995
, “
Process Optimization of Copper MOCVD Using Modeling Experimental Design
,”
Appl. Surf. Sci.
,
91
, pp.
129
133
.
4.
Tanemura
,
M.
,
Iwata
,
K.
,
Takahashi
,
K.
,
Fujimoto
,
Y.
,
Okuyama
,
F.
,
Sugie
,
H.
, and
Filip
,
V.
,
2001
, “
Growth of Aligned Carbon Nanotubes by Plasma-Enhanced Chemical Vapor Deposition: Optimization of Growth Parameters
,”
J. Appl. Phys.
,
90
(
3
), pp.
1529
1533
.
5.
Wang
,
X. A.
, and
Mahajan
,
R. L.
,
1995
, “
CVD Epitaxial Deposition in a Vertical Barrel Reactor—Process Modeling and Optimization Using Neural-Network Models
,”
J. Electrochem. Soc.
,
142
(
9
), pp.
3123
3132
.
6.
Xie
,
H.
,
Lee
,
Y. C.
,
Mahajan
,
R. L.
, and
Su
,
R.
,
1994
, “
Process Optimization Using a Fuzzy-Logic Response-Surface Method
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
17
(
2
), pp.
202
211
.
7.
Chae
,
Y. K.
,
Egashira
,
Y.
,
Shimogaki
,
Y.
,
Sugawara
,
K.
, and
Komiyama
,
H.
,
1999
, “
Chemical Vapor Deposition Reactor Design Using Small-Scale Diagnostic Experiments Combined With Computational Fluid Dynamics Simulations
,”
J. Electrochem. Soc.
,
146
(
5
), pp.
1780
-
1788
.
8.
Southwell
,
R. P.
,
Mendicino
,
M. A.
, and
Seebauer
,
E. G.
,
1996
, “
Optimization of Selective TiSi2 Chemical Vapor Deposition by Mechanistic Chemical Kinetics
,”
J. Vac. Sci. Technol. A
,
14
(
3
), pp.
928
934
.
9.
Kee, R. J., Ting, A., and Spence, P. A., 1995, “Understanding and Improving Materials Processing Through Interpreting and Manipulating Predictive Models,” Chemical Vapor Deposition of Refractory Metals and Ceramics III, Vol. 363, pp. 3–14. Materials Research Society.
10.
Raja
,
L. L.
,
Kee
,
R. J.
,
Serban
,
R.
, and
Petzold
,
L. R.
,
2000
, “
Computational Algorithm for Dynamic Optimization of Chemical Vapor Deposition Processes in Stagnation Flow Reactors
,”
J. Electrochem. Soc.
,
147
(
7
), pp.
2718
2726
.
11.
Gevelber, M. A., Toledo-Quin˜ones, M., Bufano, M., and Can Deniz, M., 1995, “Modelling TiN Deposition Dynamics for Control of CVD,” Proceedings of the IMECE, Vol. 69–2, pp. 1093–1105, ASME MD.
12.
Baliga
,
J.
,
1997
, “
Depositing Diffusion Barriers
,”
Semicond. Int.
, pp.
76
81
May.
13.
Chatterjee
,
S.
,
Sudarshan
,
T. S.
, and
Chandrashekhar
,
S.
,
1992
, “
Review: Modelling and Experimental Studies of Properties of TiN Coatings
,”
J. Mater. Sci.
,
27
, pp.
1989
2006
.
14.
Rebenne
,
H. E.
, and
Bhat
,
D. G.
,
1994
, “
Review of CVD TiN Coatings for Wear-Resistant Applications: Deposition Processes, Properties and Performance
,”
Surf. Coat. Technol.
,
63
, pp.
1
13
.
15.
Chiu
,
W. K. S.
, and
Jaluria
,
Y.
,
2000
, “
Continuous Chemical Vapor Deposition Processing With a Moving Finite Thickness Susceptor
,”
J. Mater. Res.
,
15
, pp.
317
328
.
16.
Kurtz
,
S. R.
, and
Gordon
,
R. G.
,
1986
, “
Chemical Vapor Deposition of Titanium Nitride at Low Temperatures
,”
Thin Solid Films
,
140
, pp.
277
290
.
17.
Chiu
,
W. K. S.
, and
Jaluria
,
Y.
,
1999
, “
Effect of Buoyancy, Susceptor Motion, and Conjugate Transport in Chemical Vapor Deposition Systems
,”
ASME J. Heat Transfer
,
121
, pp.
757
-
761
.
18.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, John Wiley & Sons, Inc., NY.
19.
Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B., 1988, Buoyancy-Induced Flows and Transport, Hemisphere Publishing Corporation, NY.
20.
Panton, R. L., 1984, Incompressible Flow, John Wiley & Sons, Inc., NY.
21.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, Philidelphia, PA.
22.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Taylor & Francis, Philidelphia, PA, third edition.
23.
Mills, A. F., 1992, Heat Transfer, Irwin, Inc., Boston, MA.
24.
Buiting
,
M. J.
,
Otterloo
,
A. F.
, and
Montree
,
A. H.
,
1991
, “
Kinetical Aspects of the LPCVD of Titanium Nitride from Titanium Tetrachloride and Ammonia
,”
J. Electrochem. Soc.
,
138
(
2
), pp.
500
505
.
25.
Fogler, H. S., 1992, Elements of Chemical Reaction Engineering, Prentice Hall, NJ.
26.
Reid, R. C., and Sherwood, T. K., 1966, The Properties of Gases and Liquids: Their Estimation and Correlation, McGraw-Hill, NY, second edition.
27.
Chen
,
N. H.
,
1959
, “
Empirical Equation for the Collision Function on Lennard-Jones Potential for Gas Diffusion Coefficient
,”
Industrial and Engineering Chemistry
,
51
, p.
1494
1494
.
28.
Kee, R. J., Rupley, F. M., and Miller, J. A., 1996, “Chemkin-III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics,” Technical Report SAND96-8216, Sandia National Laboratories.
29.
Bretsznajder, S., 1971, Prediction of Transport and Other Physical Properties of Fluids, Pergamon Press, NY.
30.
Jaluria, Y., and Torrance, K. E., 1986, Computational Heat Transfer, Hemisphere Publishing Corporation, U.S.A.
31.
Chiu
,
W. K. S.
, and
Jaluria
,
Y.
,
2000
, “
Numerical Simulation of Chemical Vapor Deposition Processes Under Variable and Constant Property Approximations
,”
Numer. Heat Transfer, Part A
,
37
, pp.
113
132
.
32.
Jaluria, Y., 1998, Design and Optimization of Thermal Systems, McGraw-Hill, NY.
33.
Price
,
J. B.
,
Borland
,
J. O.
, and
Selbrede
,
S.
,
1993
, “
Properties of Chemical-Vapor-Deposited Titanium Nitride
,”
Thin Solid Films
,
236
, pp.
311
318
.
34.
Arora, J. S., 1989, Introduction to Optimum Design, McGraw-Hill, NY.
35.
Hojo
,
J.
, and
Kato
,
A.
,
1981
, “
Direct Observation of the Formation Process of TiN Particles by CVD Method
,”
Yogyo Kyokaishi
,
89
(
5
), pp.
277
279
.
You do not currently have access to this content.