Advanced finite element software makes it possible to perform accurate simulations of orthogonal metal cutting provided all input parameters such as material properties, friction and material separation criteria are known. In principle, such properties can be determined by performing a series of cutting experiments and mechanical property tests, and then iterating the finite element simulations until acceptable agreement is reached. Cutting measurements have generally included only cutting forces and tool-chip temperatures. We hypothesize that by closely coupling simulations to conventional cutting force measurements and with fine scale spatial and temporal experimental measurements of temperature and strain fields, questions related to the choice of parameters in finite element simulations can be resolved. As a step towards that resolution a method for high resolution experimental measurements of temperature and strain fields is presented here. Temperatures of the workpiece and chip are measured during transient metal cutting over areas of 27×27μm and time scales of 200 ns by using infrared detectors. Three different materials, 1018CR steel, Al6061-T6 and Ti-6Al-4V are tested. A grid method is used to measure deformations in steel with a spatial resolution of 50 μm.

1.
Shaw
,
M. S.
,
1993
, “
Some Observations Concerning the Mechanics of Cutting and Grinding
,”
Appl. Mech. Rev.
,
46
, pp.
74
79
.
2.
Komanduri
,
R.
,
1993
, “
Machining and Grinding: A Historical Review of the Classical Papers
,”
Appl. Mech. Rev.
,
46
, pp.
80
132
.
3.
Merchant
,
M. E.
,
1945
, “
Mechanics of Metal Cutting Process
,”
J. Appl. Phys.
,
16
, pp.
267
318
.
4.
Lee
,
E. H.
, and
Shaffer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
,
18
, pp.
405
413
.
5.
Usui, E., and Shirakashi, T., 1982, “Mechanics of Metal Machining-From ‘Descriptive’ to ‘Predictive’ Theory,” On the Art of Cutting Metals: A Tribute to F. W. Taylor, ASME PED 7, Kops, L., and Ramalingam, S., eds.
6.
Strenkowski
,
J. S.
, and
Moon
,
K-J.
,
1990
, “
Finite Element Prediction of Chip Geometry and Tool/Workpiece Temperature Distributions in Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
112
, pp.
313
318
.
7.
Lin
,
Z. C.
, and
Lin
,
S. Y.
,
1992
, “
A Coupled Finite Element Model of Thermo-elastic Large Deformation for Orthogonal Cutting
,”
ASME J. Eng. Mater. Technol.
,
114
, pp.
218
226
.
8.
Xie
,
J. Q.
,
Bayoumi
,
A. E.
, and
Zbib
,
H. M.
,
1994
, “
A Study on Shear Banding in Chip Formation of Orthogonal Machining
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
835
847
.
9.
Marusich
,
T. D.
, and
Ortiz
,
M.
,
1995
, “
Modeling and Simulation of High Speed Machining
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
3675
3694
.
10.
Shet
,
C.
, and
Deng
,
X.
,
2000
, “
Finite Element Analysis of the Orthogonal Metal Cutting Process
,”
J. Mater. Process. Technol.
,
105
, pp.
95
110
.
11.
Shi
,
G. Q.
,
Deng
,
X. M.
, and
Shet
,
C.
,
2002
, “
A Finite Element Study of the Effect of Friction in Orthogonal Metal Cutting
,”
Finite Elem. Anal. Design
,
38
, pp.
863
883
.
12.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
1999
, “
Thermo-mechanical Modeling of Orthogonal Machining Process by Finite Element Analysis
,”
Int. J. Mach. Tools Manuf.
,
39
, pp.
731
770
.
13.
Shih
,
A. J.
, and
Yang
,
H. T. Y.
,
1993
, “
Experimental and Finite Element Predictions on the Residual Stresses due to Orthogonal Metal Cutting
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
1487
1507
.
14.
Shih
,
A. J.
,
1995
, “
Finite Element Simulation of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
117
, pp.
84
93
.
15.
Shirakashi
,
T.
, and
Obikawa
,
T.
,
1998
, “
Recent Progress and Some Difficulties in Computational Modeling of Machining
,”
Mach. Sci. Technol.
,
2
, pp.
277
301
.
16.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy—Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
208
215
.
17.
Obikawa
,
T.
,
Sasahara
,
H.
,
Shirasaki
,
T.
, and
Usui
,
E.
,
1997
, “
Application of Computational Machining Method to Discontinuous Chip Formation
,”
ASME J. Manuf. Sci. Eng.
, ,
119
, pp.
667
674
.
18.
El Hossainy
,
T. M.
,
El-Shazly
,
M. H.
, and
Abd-Rabou
,
M.
,
2001
, “
Finite Element Simulation of Metal Cutting Considering Chip Behavior and Temperature Distribution
,”
Mater. Manuf. Processes
,
16
, pp.
803
814
.
19.
Warnecke
,
G.
, and
Oh
,
J. D.
,
2002
, “
A New Thermo-viscoplastic Material Model for Finite Element Analysis of the Chip Formation Process
,”
CIRP Ann.
,
51
, pp.
79
82
.
20.
Mamalis
,
A. G.
,
Horvath
,
M.
,
Branis
,
A. S.
, and
Manolakos
,
D. E.
,
2001
, “
Finite Element Simulation of Chip Formation in Orthogonal Metal Cutting
,”
J. Mater. Process. Technol.
,
110
, pp.
19
27
.
21.
Yen
,
Y. C.
,
Sohner
,
J.
,
Weule
,
H.
,
Schmidt
,
J.
, and
Altan
,
T.
,
2002
, “
Estimation of Tool Wear of Carbide Tool in Orthogonal Cutting Using FEM simulation
,”
Mach. Sci. Technol.
,
6
, pp.
467
486
.
22.
Li
,
K.
,
Gao
,
X. L.
, and
Sutherland
,
J. W.
,
2002
, “
Finite Element Simulation of the Orthogonal Metal Cutting Process for Qualitative Understanding of the Effects of Crater Wear on the Chip Formation Process
,”
J. Mater. Process. Technol.
,
127
, pp.
309
324
.
23.
Boothroyd
,
G.
,
1961
, “
Photographic Technique for the Determination of Metal Cutting Temperatures
,”
Br. J. Appl. Phys.
,
12
, pp.
238
242
.
24.
Chao
,
B. T.
,
Li
,
H. L.
, and
Trigger
,
K. J.
,
1961
, “
An Experimental Investigation of Temperature Distribution at Tool-flank Surface
,”
Trans. ASME
,
83
, pp.
496
504
.
25.
Prins
,
O. D.
,
1971
, “
The Influence of Wear on the Temperature Distribution at the Rake Face
,”
CIRP Ann.
,
XVIV
, pp.
579
584
.
26.
Lezanski
,
P.
, and
Shaw
,
M. C.
,
1990
, “
Tool Face Temperatures in High Speed Milling
,”
Trans. ASME
,
112
, pp.
132
135
.
27.
Ay
,
H.
,
Yang
,
W.-J.
, and
Yang
,
J. A.
,
1994
, “
Dynamics of Cutting Tool Temperatures During Cutting Process
,”
Exp. Heat Transfer
,
7
, pp.
203
216
.
28.
Stephenson
,
D. A.
,
1991
, “
Assessment of Steady-state Metal Cutting Temperature Models Based on Simultaneous Infrared and Thermocouple Data
,”
ASME J. Eng. Ind.
,
113
, pp.
121
128
.
29.
Mu¨ller-Hummel
,
P.
,
Lahres
,
M.
,
Mehlhose
,
J.
, and
Lang
,
G.
,
1997
, “
Measurement of Temperature in Diamond Coated Tools During Machining Processes
,”
Diamond Films Technol.
,
7
, pp.
219
239
.
30.
M’Saoubi
,
R.
,
Le Calvez
,
C.
,
Changeux
,
B.
, and
Lebrun
,
J. L.
,
2002
, “
Thermal and Microstructural Analysis of Orthogonal Cutting of a Low Alloyed Carbon Steel Using an Infrared-charge-coupled Device Camera Technique
,”
Proc. Inst. Mech. Eng.
,
216
, pp.
153
165
.
31.
Davies, M. A., Yoon, H., Schmitz, T. L., and Kennedy, M. S., 2003, “Calibrated Thermal Microscopy of the Tool Chip Interface in Machining,” Mach. Sci. Technol., 7, in press.
32.
Davies, M. A., Cao, Q., Cooke, A. L., and Ivester, R., 2003, “On the Measurement and Prediction of Temperature Fields in Machining AISI 1045 Steel,” CIRP Ann., 52.
33.
Bitans
,
K.
, and
Brown
,
R. H.
,
1965
, “
An Investigation of the Deformation in Orthogonal Cutting
,”
Int. J. Mach. Tool Des. Res.
,
5
, pp.
155
165
.
34.
Zorev, N. N., 1966, Metal Cutting Mechanics, Shaw, M. C., ed., Pergamon Press.
35.
Palmer
,
W. B.
, and
Oxley
,
P. L. B.
,
1959
, “
Mechanics of Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
173
, pp.
623
654
.
36.
Komanduri
,
R.
, and
Brown
,
R. H.
,
1981
, “
On the Mechanics of Chip Segmentation in Machining
,”
ASME J. Eng. Ind.
,
103
, pp.
33
51
.
37.
Potdar, Y. K., 2001, “Measurements and Simulations of Temperature and Deformation Fields in Transient Orthogonal Metal Cutting,” PhD. Thesis, Cornell University.
38.
Zehnder
,
A. T.
, and
Rosakis
,
A. J.
,
1991
, “
On the Temperature Distribution in the Vicinity of Dynamically Propagating Cracks in 4340 Steel
,”
J. Mech. Phys. Solids
,
39
, pp.
385
415
.
39.
Zehnder, A. T., and Rosakis, A. J., 1993, “Temperature Rise at the Tip of Dynamically Propagating Cracks: Measurements Using High Speed Infrared Detectors,” Experimental Techniques in Fracture, III, J. Epstein, ed., VCH Publishers, pp. 125–170.
40.
Kallivayalil
,
J. A.
, and
Zehnder
,
A. T.
,
1994
, “
Measurement of the Temperature Field Induced by Dynamic Crack Growth in Beta-C Titanium
,”
Int. J. Fract.
,
66
, pp.
99
120
.
41.
Guduru
,
P.
,
Zehnder
,
A. T.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
2002
, “
Dynamic, Full-field Measurements of Crack Tip Temperatures
,”
Eng. Fract. Mech.
,
68
, pp.
1535
1556
.
42.
Zehnder, A. T., Potdar, Y. K., and Bhalla, K., 2002, “Plasticity Induced Heating in the Fracture and Cutting of Metals,” Thermo Mechanical Fatigue and Fracture, M. H. Aliabadi, ed., WIT Press, pp. 209–244.
43.
ABAQUS Users Manual, Version 5.8, 1999, Kibbit, Karlsson and Sorenson, Inc., Providence, RI.
44.
Shawki
,
T. G.
, and
Clifton
,
R. J.
,
1989
, “
Shear Band Formation in Thermal Viscoplastic Materials
,”
Mech. Mater.
,
8
, pp.
13
43
.
45.
Yadav
,
S.
,
Chichili
,
D. R.
, and
Ramesh
,
K. T.
,
1995
, “
The Mechanical Response of A 6061-T6 Al/Al2O3 Metal Matrix Composite at High Rates of Deformation
,”
Acta Metall. Mater.
,
43
, pp.
4453
4464
.
46.
Da Silva
,
M. G.
, and
Ramesh
,
K. T.
,
1997
, “
The Rate Dependent Deformation and Localization of Fully Dense and Porous Ti-6Al-4V
,”
Mater. Sci. Eng., A
,
A232
, pp.
11
22
.
47.
Ramesh, K. T., 2001, Personal communication.
48.
Metals Handbook, 1998, ASM International, Materials Park, Ohio.
49.
Military Handbook, MIL-HDBK-5G, 1, 1994.
50.
Carboloy TEC Team, 2001, Personal communication.
51.
Thermophysical Properties of Matter, The TPRC Data Series, 1970, IFI/Plenum.
52.
Kirth-Othmer, ed., 1978, Encyclopedia of Chemical Technology, Third Ed., Vol. 4, John Wiley and Sons,
53.
Moufki
,
A.
,
Molinari
,
A.
, and
Dudzinski
,
D.
,
1998
, “
Modeling of Orthogonal Cutting With a Temperature Dependent Friction Law
,”
J. Mech. Phys. Solids
,
46
, pp.
2103
2138
.
54.
Zehnder
,
A. T.
,
Guduru
,
P. R.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
2000
, “
Million Frames per Second Infrared Imaging System
,”
Rev. Sci. Instrum.
,
71
, pp.
3762
3768
.
You do not currently have access to this content.