In this paper, a predictive thermal and analytical modeling approach for orthogonal cutting process is introduced to conveniently calculate forces, stress, and temperature distributions. The modeling approach is based on the work material constitutive model, which depends on strain, strain rate, and temperature. In thermal modeling, oblique moving band heat source theory is utilized and analytically combined with modified Oxley’s parallel shear zone theory. Normal stress distribution on the tool rake face is modeled as nonuniform with a power-law relationship. Hence, nonuniform heat intensity at the tool-chip interface is obtained from the predicted stress distributions utilizing slip line field analysis of the modified secondary shear zone. Heat sources from shearing in the primary zone and friction at the tool-chip interface are combined, heat partition ratios are determined for temperature equilibrium to obtain temperature distributions depending on cutting conditions. Model validation is performed by comparing some experimental results with the predictions for machining of AISI 1045 steel, AL 6082-T6, and AL 6061-T6 aluminum. Close agreements with the experiments are observed. A set of detailed, analytically computed stress and temperature distributions is presented.

1.
Ernst
,
H.
, and
Merchant
,
M. E.
, 1941, “
Chip Formation, Friction and High Quality Machined Surfaces
,”
Trans. Am. Soc. Met.
0096-7416,
29
, pp.
299
378
.
2.
Lee
,
E. H.
, and
Shaffer
,
B. W.
, 1951, “
The Theory of Plasticity Applied to a Problem of Machining
,”
J. Appl. Mech.
0021-8936,
18
, pp.
405
413
.
3.
Zorev
,
N. N.
, 1963, “
Inter-Relationship Between Shear Processes Occurring Along Tool Face and Shear Plane in Metal Cutting
,”
International Research in Production Engineering ASME
, New York, pp.
42
49
.
4.
Oxley
,
P. L. B.
, 1989,
Mechanics of Machining, an Analytical Approach to Assessing Machinability
,
Ellis Horwood Limited
,
Chichester, England
.
5.
Childs
,
T. H. C.
, 1998, “
Material Property Needs in Modeling Metal Machining
,”
Proceedings of the CIRP International Workshop on Modeling of Machining Operations
,
Atlanta
, Georgia,
I. S.
Jawahir
,
A. K.
Balaji
, and
R.
Stevenson
, eds., University of Kentucky Publishing Services, Lexington, KY, May 19, pp.
193
202
.
6.
Özel
,
T.
, and
Altan
,
T.
, 2000, “
Determination of Workpiece Flow Stress and Friction at the Chip-Tool Contact for High-Speed Cutting
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
(
1
), pp.
133
152
.
7.
Özel
,
T.
, and
Zeren
,
E.
, 2005, “
A Methodology to Determine Work Material Flow Stress and Tool-Chip Interfacial Friction Properties by Using Analysis of Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357, in press.
8.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague
, The Netherlands, April 21–26, pp.
541
547
.
9.
Hahn
,
R. S.
, 1951, “
On the Temperature Developed at the Shear Plane in the Metal Cutting Process
,”
Proceedings of First US National Congress of Applied Mechanics
, pp.
661
666
.
10.
Trigger
,
K. J.
, and
Chao
,
B. T.
, 1951, “
An Analytical Evaluation of Metal Cutting Temperatures
,”
Trans. ASME
0097-6822,
73
, pp.
57
68
.
11.
Chao
,
B. T.
, and
Trigger
,
K. J.
, 1953, “
The Significance of the Thermal Number in Metal Machining
,”
Trans. ASME
0097-6822,
75
, pp.
109
120
.
12.
Leowen
,
E. G.
, and
Shaw
,
M. C.
, 1954, “
On the Analysis of Cutting Tool Temperatures
,”
Trans. ASME
0097-6822,
71
, pp.
217
231
.
13.
Leone
,
W. C.
, 1954, “
Distribution of Shear Zone Heat in Metal Cutting
,”
Trans. ASME
0097-6822,
76
, pp.
121
125
.
14.
Boothroyd
,
G.
, 1963, “
Temperatures in Orthogonal Metal Cutting
,”
Proc. Inst. Mech. Eng.
0020-3483,
177
, pp.
789
810
.
15.
Komanduri
,
R.
, and
Hou
,
Z. B.
, 2001, “
Thermal Modeling of the Metal Cutting Process, Part 1: Temperature Rise Distribution Due to Shear Plane Heat Source
,”
Int. J. Mech. Sci.
0020-7403,
42
, pp.
1715
1752
.
16.
Komanduri
,
R.
, and
Hou
,
Z. B.
, 2001, “
Thermal Modeling of the Metal Cutting Process, Part 2: Temperature Rise Distribution Due to Frictional Heat Source at the Tool-Chip Interface
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
57
88
.
17.
Komanduri
,
R.
, and
Hou
,
Z. B.
, 2001, “
Thermal Modeling of the Metal Cutting Process, Part 3: Temperature Rise Distribution Due to Combined Effects of Shear Plane Heat Source and the Tool-Chip Interface Frictional Heat Source
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
89
107
.
18.
Huang
,
Y.
, and
Liang
,
S. Y.
, 2003, “
Modelling of the Cutting Temperature Distribution Under the Tool Flank Wear Effect
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
217
, pp.
1195
1208
.
19.
Jaspers
,
S. P. F. C.
, and
Dautzenberg
,
J. H.
, 2002, “
Material Behavior in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone
,”
J. Mater. Process. Technol.
0924-0136,
122
, pp.
322
330
.
20.
Adibi-Sedeh
,
A. H.
,
Madhavan
,
V.
, and
Bahr
,
B.
, 2003, “
Extension of Oxley’s Analysis of Machining to Use Different Material Models
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
656
666
.
21.
Johnson
,
G. R.
,
Stryk
,
R. A.
,
Holmquist
,
T. J.
, and
Beissel
,
S. R.
, 1996,
User Instruction for the 1996 Version of the EPIC Code
,
Alliant Techsystems Inc.
22.
Jaeger
,
J. C.
, 1942, “
Moving Sources of Heat and the Temperatures at Sliding Contacts
,”
J. Proc. R. Soc. N. S. W.
0035-9173,
76
, pp.
203
224
.
23.
Ivester
,
R. W.
,
Kennedy
,
M.
,
Davies
,
M.
,
Stevenson
,
R.
,
Thiele
,
J.
,
Furness
,
R.
, and
Athavale
,
S.
, 2000, “
Assessment of Machining Models: Progress Report
,”
Mach. Sci. Technol.
1091-0344,
4
(
3
), pp.
511
538
.
24.
Jaspers
,
S. P. F. C.
, and
Dautzenberg
,
J. H.
, 2002, “
Material Behavior in Metal Cutting: Strains, Strain Rates and Temperatures in Chip Formation
,”
J. Mater. Process. Technol.
0924-0136,
121
, pp.
123
135
.
25.
Davies
,
M. A.
,
Cao
,
Q.
,
Cooke
,
A. L.
, and
Ivester
,
R.
, 2003, “
On the Measurement and Prediction of Temperature Fields in Machining 1045 Steel
,”
CIRP Ann.
0007-8506,
52
(
1
), pp.
77
80
.
26.
Li
,
X.
, 1997, “
Development of a Predictive Model for Stress Distributions at the Tool-Chip Interface In Machining
,”
J. Mater. Process. Technol.
0924-0136,
63
, pp.
169
174
.
27.
Tay
,
A. O.
,
Stevenson
,
M. G.
, and
de Vahl Davis
,
G.
, 1974, “
Using the Finite Element Method to Determine Temperature Distributions in Orthogonal Machining
,”
Proceedings of Institution for Mechanical Engineers
,
188
, pp.
627
638
.
28.
Adibi-Sedeh
,
A. H.
, and
Madhavan
,
V.
, 2002, “
Effect of Some Modifications to Oxley’s Machining Theory and the Applicability of Different Material Models
,”
Mach. Sci. Technol.
1091-0344,
6
(
3
), pp.
379
395
.
You do not currently have access to this content.