The paper reviews applications of data mining in manufacturing engineering, in particular production processes, operations, fault detection, maintenance, decision support, and product quality improvement. Customer relationship management, information integration aspects, and standardization are also briefly discussed. This review is focused on demonstrating the relevancy of data mining to manufacturing industry, rather than discussing the data mining domain in general. The volume of general data mining literature makes it difficult to gain a precise view of a target area such as manufacturing engineering, which has its own particular needs and requirements for mining applications. This review reveals progressive applications in addition to existing gaps and less considered areas such as manufacturing planning and shop floor control.

1.
Spiegler
,
I.
, 2003, “
Technology and Knowledge: Bridging a ‘Generating’ Gap
,”
Inf. Manage.
0378-7206,
40
, pp.
533
539
.
2.
Han
,
J.
, and
Kamber
,
M.
, 2001,
Data Mining: Concepts and Techniques
,
Morgan Kaufmann
,
New York
, 550 pp.
3.
Malkoff
,
D. B.
, 1987, “
A Framwork for Real-Time Fault Detection and Diagnosis Using Temporal Data
,”
Artif. Intell. Eng.
0954-1810,
2
(
2
), pp.
97
111
.
4.
Ramamoorthy
,
C. V.
, and
Wah
,
B. W.
, 1989, “
Knowledge and Data Engineering
,”
IEEE Trans. Knowl. Data Eng.
1041-4347,
1
(
1
), pp.
9
16
.
5.
Lee
,
M. H.
, 1993, “
Knowledge Based Factory
,”
Artif. Intell. Eng.
0954-1810,
8
, pp.
109
125
.
6.
Irani
,
K. B.
,
Cheng
,
J.
,
Fayyad
,
U. M.
, and
Qian
,
Z.
, 1993, “
Applying Machine Learning to Semiconductor Manufacturing
,”
IEEE Expert
0885-9000,
8
(
1
), pp.
41
47
.
7.
Piatetsky-Shapiro
,
G.
, 1999, “
The Data Mining Industry Coming of Age
,”
IEEE Intell. Syst.
1094-7167,
14
(
6
), pp.
32
34
.
8.
Neaga
,
E. I.
, and
Harding
,
J. A.
, 2002, “
A Review of Data Mining Techniques and Software Systems to Improve Business Performance in Extended Manufacturing Enterprises
,”
Int. J. Adv. Manuf. Syst. (IJMAS), Spec Issue Decis. Eng.
1536-2647,
5
(
1
), pp.
3
19
.
9.
Neaga
,
E. I.
, and
Harding
,
J. A.
, 2001, “
Data Mining Techniques for Supporting Manufacturing Enterprise Design
,”
International Conference on Industrial and Production Management
,
Quebec City
,
Canada
, pp.
232
241
.
10.
SPSS, 1999,
CRISP-DM 1.0 Step-By-Step Data Mining Guide
.
11.
Shahbaz
,
M.
, 2005, “
Product and Manufacturing Process Improvement Using Data Mining
,” Ph.D. thesis, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire,
194
pp.
12.
Neaga
,
E. I.
, and
Harding
,
J. A.
, 2005, “
An Enterprise Modelling and Integration Framework Based on Knowledge Discovery and Data Mining
,”
Int. J. Prod. Res.
0020-7543,
43
(
6
), pp.
1089
1108
.
13.
Neaga
,
E. I.
, 2003, “
Framework for Distributed Knowledge Discovery Systems Embedded in Extended Enterprise
,” Ph.D. thesis, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK,
192
pp.
14.
Sim
,
S. K.
, and
Chan
,
Y. W.
, 1992, “
A Knowledge-Based Expert System for Rolling-Element Bearing Selection in Mechanical Engineering Design
,”
Artif. Intell. Eng.
0954-1810,
6
(
3
), pp.
125
135
.
15.
Kusiak
,
A.
,
Kernstine
,
K. H.
,
Kern
,
J. A.
,
McLaughlin
,
K. A.
, and
Tseng
,
T. L.
, 2000, “
Data Mining: Medical and Engineering Case Studies
,”
Industrial Engineering Research Conference
,
Cleveland
, OH, pp.
1
7
.
16.
Ishino
,
Y.
, and
Jin
,
Y.
, 2001, “
Data Mining and Knowledge Acquisition in Engineering Design
,”
Data Mining for Design and Manufacturing: Methods and Applications
,
D.
Braha
, ed.,
Kluwer Academic
, Dordrecht, pp.
145
160
.
17.
Romanowski
,
C. J.
, and
Nagi
,
R.
, 2001, “
A Data Mining for Knowledge Acquisition in Engineering Design
,”
Data Mining for Design and Manufacture: Methods and Applications
,
D.
Braha
, ed.,
Kluwer Academic
, Dordrecht, pp.
161
178
.
18.
Giess
,
M. D.
,
Culley
,
S. J.
, and
Shepherd
,
A.
, 2002, “
Informing Design Using Data Mining Methods
,”
ASME DETC
,
Montreal
,
Canada
, pp.
98
106
.
19.
Giess
,
M. D.
, and
Culley
,
S. J.
, 2003, “
Investigating Manufacturing Data for Use Within Design
,”
ICED 03
,
Stockholm
,
Sweden
, pp.
1408
1413
.
20.
Hamburg
,
I.
, 2002, “
Improving Computer Supported Environment Friendly Product Development by Analysis of Data
,”
2nd European Conference on Intelligent Systems and Technologies
,
Iasi
,
Romania
, p.
6
.
21.
Romanowski
,
C. J.
, and
Nagi
,
R.
, 2005, “
On Comparing Bills of Materials: A Similarity/Distance Measure for Unordered Trees
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
35
(
2
), pp.
249
260
.
22.
Romanowski
,
C. J.
, and
Nagi
,
R.
, 2004, “
A Data Mining Approach to Forming Generic Bills of Material in Support of Variant Design Activities
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
4
(
4
), pp.
316
328
.
23.
Kim
,
P.
, and
Ding
,
Y.
, 2005, “
Optimal Engineering System Design Guided by Data-Mining Methods
,”
Technometrics
0040-1706,
47
(
3
), pp.
336
348
.
24.
Shahbaz
,
M.
, and
Harding
,
J. A.
, 2003, “
An Integrated Data Mining Model for Manufacturing Enterprises
,”
International Conference on Manufacturing Research
,
Glasgow
, pp.
539
545
.
25.
Kim
,
S. H.
, and
Lee
,
C. M.
, 1997, “
Non Linear Prediction of Manufacturing Systems Through Explicit and Implicit Data Mining
,”
Comput. Ind. Eng.
0360-8352,
33
(
3-4
), pp.
461
464
.
26.
Adachi
,
T.
,
Talavage
,
J. J.
, and
Modie
,
C. L.
, 1989, “
A Rule Based Control Method for a Multi Loop Production System
,”
Artif. Intell. Eng.
0954-1810,
4
(
3
), pp.
115
125
.
27.
Whitehall
,
B. L.
,
Lu
,
S. C. Y.
, and
Stepp
,
R. E.
, 1990, “
CAQ: A Machine Learning Tool for Engineering
,”
Artif. Intell. Eng.
0954-1810,
5
(
4
), pp.
189
198
.
28.
Gardner
,
M.
, and
Bieker
,
J.
, 2000, “
Data Mining Solves Tough Semi Conductor Problems
,”
KDD 2000
,
Boston
, pp.
376
383
.
29.
Sebzalli
,
Y. M.
, and
Wang
,
X. Z.
, 2001, “
Knowledge Discovery From Process Operational Data Using PCA and Fuzzy Clustering
,”
Eng. Applic. Artif. Intell.
0952-1976,
14
, pp.
607
616
.
30.
Lee
,
J. H.
, and
Park
,
S. C.
, 2001, “
Data Mining for High Quality and Quick Response Manufacturing
,”
Data Mining for Design and Manufacturing: Methods and Applications
,
D.
Braha
, ed.,
Kluwer Academic
, pp.
179
205
.
31.
Last
,
M.
, and
Kandel
,
A.
, 2001, “
Data Mining for Process and Quality Control in the Semiconductor Industry
,”
Data Mining for Design and Manufacturing: Methods and Applications
,
D.
Braha
, ed.,
Kluwer Academic
, pp.
207
234
.
32.
Kusiak
,
A.
, 2001, “
Rough Set Theory: A Data Mining Tool for Semiconductor Manufacturing
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
24
(
1
), pp.
44
50
.
33.
Dabbas
,
R. M.
, and
Chen
,
H. N.
, 2001, “
Mining Semiconductor Manufacturing Data for Productivity Improvement—An Integrated Relational Database Approach
,”
Comput Ind.
0166-3615,
45
, pp.
29
44
.
34.
McDonald
,
C. J.
, 1999, “
New Tools for Yield Improvement in Integrated Circuit Manufacturing: Can They be Applied to Reliability?
,”
Microelectron. Reliab.
0026-2714,
39
(
6-7
), pp.
731
739
.
35.
Fountain
,
T.
,
Dietterich
,
T.
, and
Sudyka
,
B.
, 2003, “
Data Mining for Manufacturing Control: An Application in Optimizing IC Test
,”
Exploring Artificial Intelligence in the New Millennium
,
G.
Lakemeyer
and
B.
Nebel
, eds.,
Morgan Kaufmann
, San Francisco, CA, pp.
381
400
.
36.
Park
,
K. S.
, and
Kim
,
S. H.
, 1998, “
Artificial Intelligence Approaches to Determination of CNC Machining Parameters in Manufacturing: A Review
,”
Artif. Intell. Eng.
0954-1810,
12
, pp.
127
134
.
37.
Liao
,
T. W.
,
Chen
,
J. H.
, and
Triantaphyllou
,
E.
, 1999, “
Data Mining Applications in Industrial Engineering: A Perspective
,”
Proceedings of the 25th International Conference on Computers and Industrial Engineering
,
New Orleans
,
LA
, pp.
265
276
.
38.
Gertosio
,
C.
, and
Dussauchoy
,
A.
, 2004, “
Knowledge Discovery From Industrial databases
,”
J. Intell. Manuf.
0956-5515,
15
, pp.
29
37
.
39.
Yin
,
Z. L.
,
Pheng
,
K. L.
, and
Cheong
,
F. S.
, 2001, “
Derivation of Decision Rules for the Evaluation of Product Performance Using Generic Algorithms and Rough Set Theory
,”
Data Mining for Design and Manufacturing: Methods and Applications
,
D.
Braha
, ed.,
Kluwer Academic
, Dordrecht, pp.
337
353
.
40.
Feng
,
C. X. J.
, and
Wang
,
X. F.
, 2004, “
Data Mining Techniques Applied to Predictive Modelling of the Knurling Process
,”
IIE Trans.
0740-817X,
36
, pp.
253
263
.
41.
Maki
,
H.
, and
Teranishi
,
Y.
, 2001, “
Development of Automated Data Mining System for Quality Control in Manufacturing
,”
Lecture Notes in Computer Science
,
Springer-Verlag
, Berlin, pp.
93
100
.
42.
Maki
,
H.
,
Maeda
,
A.
,
Morita
,
T.
, and
Akimori
,
H.
, 1999, “
Applying Data Mining to Data Analysis in Manufacturing
,”
International Conference on Advances in Production Management Systems
, pp.
324
331
.
43.
Adams
,
L.
, 2002, “
Mining Factory Data
,”
Quality Magazine, Software and Analysis
, May, pp.
5
.
44.
Shahbaz
,
M.
,
Srinivas
,
Harding
,
J. A.
, and
Turner
,
M.
, “
Product Design and Manufacturing Process Improvement Using Association Rules
,”
Proc. Inst. Mech. Eng., Part B
(in press).
45.
Shahbaz
,
M.
,
Srinivas
, and
Harding
,
J. A.
, 2004, “
Knowledge Extraction from Manufacturing Process and Product Databases using Association Rules
,”
PDT Europe
,
Stockholm
,
Sweden
, pp.
145
153
.
46.
Chen
,
N.
,
Zhu
,
D. D.
, and
Wang
,
W.
, 2000, “
Intelligent Material Processing by Hyper Space Data Mining
,”
Eng. Applic. Artif. Intell.
0952-1976,
13
, pp.
527
532
.
47.
Mere
,
J. B. O.
,
Marcos
,
A. G.
,
Gonzalez
,
J. A.
, and
Rubio
,
V. L.
, 2004, “
Estimation of Mechanical Properties of Steel Strip in Hot Dip Galvanising Lines
,”
Ironmaking Steelmaking
0301-9233,
31
(
1
), pp.
43
50
.
48.
Grabot
,
B.
,
Blanc
,
J. C.
, and
Binda
,
C.
, 1996, “
A Decision Support System for Production Activity Control
,”
Decision Support Sys.
0167-9236,
16
, pp.
87
101
.
49.
Koonce
,
D. A.
,
Fang
,
C. H.
, and
Tsai
,
S. C.
, 1997, “
A Data Mining Tool for Learning From Manufacturing Systems
,”
Comput. Ind. Eng.
0360-8352,
33
(
1-2
), pp.
27
30
.
50.
Koonce
,
D. A.
, and
Tsai
,
S. C.
, 2000, “
Using Data Mining to Find Patterns in Genetic Algorithm Solutions to a Job Shop Schedule
,”
Comput. Ind. Eng.
0360-8352,
38
, pp.
361
371
.
51.
Caskey
,
K. R.
, 2001, “
A Manufacturing Problem Solving Environment Combining Evaluation, Search and Generalisation Methods
,”
Comput Ind.
0166-3615,
44
, pp.
175
187
.
52.
Kusiak
,
A.
, 2002, “
Data Mining and Decision Making
,”
SPIE Conference on Data Mining and Knowledge Discovery: Theory, Tools and Technology IV
,
Orlando
, FL, pp.
155
165
.
53.
Kusiak
,
A.
, 2002, “
A Data Mining Approach for Generation of Control Signatures
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
923
926
.
54.
Lee
,
J. H.
, and
Park
,
S. C.
, 2003, “
Agent and Data Mining Based Decision Support System and its Adaptation to a New Customer-Centric Electronics Commerce
,”
Expert Sys. Applic.
0957-4174,
25
, pp.
619
635
.
55.
Symeonidis
,
A. L.
,
Kehagias
,
D. D.
, and
Mitkas
,
P. A.
, 2003, “
Intelligent Policy Recommendations on Enterprise Resource Planning by the Use of Agent Technology and Data Mining Techniques
,”
Expert Sys. Applic.
0957-4174,
25
, pp.
589
602
.
56.
Huang
,
C. C.
, 2004, “
A Multi-Agent Approach to Collaborative Design of Modular Products
,”
Concurr. Eng. Res. Appl.
1063-293X,
12
(
1
), pp.
39
47
.
57.
Bolloju
,
N.
,
Khalifa
,
M.
, and
Turban
,
E.
, 2002, “
Integrated Knowledge Management Into Enterprise Environment for the Next Generation Decision Support
,”
Decision Support Sys.
0167-9236,
33
, pp.
163
176
.
58.
Lau
,
H. C. W.
,
Chinb
,
K. S.
,
Punb
,
K. F.
, and
Ninga
,
A.
, 2000, “
Decision Supporting Functionality in a Virtual Enterprise Network
,”
Expert Sys. Applic.
0957-4174,
19
, pp.
261
270
.
59.
Chen
,
M. C.
, 2003, “
Configuration of Cellular Manufacturing Systems Using Association Rule Induction
,”
Int. J. Prod. Res.
0020-7543,
41
(
2
), pp.
381
395
.
60.
Chao
,
K. M.
,
Guenov
,
M.
,
Hills
,
B.
,
Smith
,
P.
,
Buxton
,
I.
, and
Tsai
,
C. F.
, 1997, “
An Expert System to Generate Associativity Data for Layout Design
,”
Artif. Intell. Eng.
0954-1810,
11
, pp.
191
196
.
61.
Belz
,
R.
, and
Mertens
,
P.
, 1996, “
Combining Knowledge Based Systems and Simulation to Solve Rescheduling Problems
,”
Decision Support Sys.
0167-9236,
17
, pp.
141
157
.
62.
Kwak
,
C.
, and
Yih
,
Y.
, 2004, “
Data Mining Approach to Production Control in the Computer Integrated Testing Cell
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
1
), pp.
107
116
.
63.
Mitkas
,
P. A.
,
Symeonidis
,
A. L.
,
Kehagias
,
D.
, and
Athanasiadis
,
I.
, 2003, “
Application of Data Mining and Intelligent Agent Technologies to Concurrent Engineering
,”
International Conference on Concurrent Engineering: Research and Applications
,
Madeira
, Portugal, pp.
11
18
.
64.
Srinivas
,
Harding
,
J. A.
, and
Shahbaz
,
M.
, 2004, “
Agent Oriented Planning Using Data Mined Knowledge
,”
10th International Conference on Concurrent Engineering, Adaptive Engineering for Sustainable Value Creation
,
Seville
, Spain, pp.
301
307
.
65.
Apte
,
C.
,
Weiss
,
S.
, and
Grout
,
G.
, 1993, “
Predicting Defects in Disk Drive Manufacturing: A Case Study in High Dimensional Classification
,”
IEEE Annual Computer Science Conference on Artificial Intelligence in Application
,
Los Alamitos
, pp.
212
218
.
66.
Liao
,
T. W.
,
Li
,
D. M.
, and
Li
,
Y. M.
, 1999, “
Detection of Welding Flaws From Radiographic Images With Fuzzy Clustering Methods
,”
Fuzzy Sets Syst.
0165-0114,
108
, pp.
145
158
.
67.
Liao
,
T. W.
,
Khan
,
Z. H.
, and
Mount
,
C. R.
, 1999, “
An Integrated Database and Expert System for Failure Mechanism Identification: Part II—The System and Performance Testing
,”
Eng. Failure Anal.
1350-6307,
6
, pp.
407
421
.
68.
Liao
,
T. W.
,
Khan
,
Z. H.
, and
Mount
,
C. R.
, 1999, “
An Integrated Database and Expert System for Failure Mechanism Identification: Part I—Automated Knowledge Acquisition
,”
Eng. Failure Anal.
1350-6307,
6
, pp.
387
406
.
69.
Liao
,
T. W.
,
Wang
,
G.
,
Triantaphyllou
,
E.
, and
Chang
,
P. C.
, 2001, “
A Data Mining Study of Weld Quality Models Constructed With MLP Neural Networks From Stratified Sample Data
,”
Industial Engineering Research Conference
, Dallas, TX, p.
6
.
70.
Shen
,
L.
,
Tay
,
F. E. H.
,
Qu
,
L. S.
, and
Shen
,
Y.
, 2000, “
Fault Diagnosis Using Rough Set Theory
,”
Comput Ind.
0166-3615,
43
, pp.
61
72
.
71.
Lu
,
J. C.
, 2001, “
Methodology of Mining Massive Data Sets for Improving Manufacturing Quality/Efficiency
,”
Data Mining for Design and Manufacturing: Methods and Applications
,
D.
Braha
, ed.,
Kluwer Academic
, Dordrecht, pp.
255
288
.
72.
Zhou
,
C.
,
Nelson
,
P. C.
,
Xiao
,
W.
,
Tirpak
,
T. M.
, and
Lane
,
S. A.
, 2001, “
An Intelligent Data Mining System for Drop Test Analysis of Electronic Products
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
24
(
3
), pp.
222
231
.
73.
Kusiak
,
A.
, and
Kurasek
,
C.
, 2001, “
Data Mining of Printed Circuit Board
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
2
), pp.
191
196
.
74.
Oh
,
S.
,
Han
,
J.
, and
Cho
,
H.
, 2001, “
Intelligent Process Control System for Quality Improvement by Data Mining in the Process Industry
,”
Data Mining for Design and Manufacturing: Methods and Applications
,
D.
Braha
, ed.,
Kluwer Academic
, Dordrecht, pp.
289
310
.
75.
Skormin
,
V. A.
,
Gorodetski
,
V. I.
, and
PopYack
,
I. J.
, 2002, “
Data Mining Technology for Failure of Prognostic of Avionics
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
38
(
2
), pp.
388
403
.
76.
Chen
,
W. C.
,
Tseng
,
S. S.
, and
Wang
,
C. Y.
, 2004, “
A Novel Manufacturing Defect Detection Method Using Data Mining Approach
,”
Lecture Notes in Artificial Intelligence
,
3029
, pp.
77
86
.
77.
Tseng
,
T. L.
,
JothiShankar
,
M. C.
, and
Wu
,
T.
, 2004, “
Quality Control Problems in Printed Circuit Board Manufacturing—An Extended Rough Set Theory Approach
,”
J. Manuf. Syst.
0278-6125,
23
(
1
), pp.
56
72
.
78.
Tseng
,
T. L.
,
JothiShankar
,
M. C.
,
Wu
,
T.
,
Xing
,
G.
, and
Jiang
,
F.
, 2004, “
Applying Data Mining Approaches for Defect Diagnosis in Manufacturing Industry
,”
IERC 2004
, Houston,
TX
, p.
7
.
79.
Tseng
,
T. L.
,
Leeper
,
T.
,
Banda
,
C.
,
Herren
,
S. M.
, and
Ford
,
J.
, 2004, “
Quality Assurance in Machining Process Using Data Mining
,”
IERC 2004
, Houston, TX, p.
6
.
80.
Shi
,
X.
, and
Boyd
,
P. S. D.
, 2004, “
Applying Artificial Neural Network and Virtual Experimental Design to Quality Improvement of Two Industrial Processes
,”
Int. J. Prod. Res.
0020-7543,
42
(
1
), pp.
101
118
.
81.
Yuan
,
B.
,
Wang
,
X. Z.
, and
Morris
,
T.
, 2000, “
Software Analyser Design Using Data Mining Technology for Toxicity Prediction of Aqueous Effluents
,”
Waste Manage.
0956-053X,
20
, pp.
677
686
.
82.
Batanov
,
D.
,
Nagarur
,
N.
, and
Nitikhumkasem
,
P.
, 1993, “
Expert—MM: A Knowledge Based System for Maintenance Management
,”
Artif. Intell. Eng.
0954-1810,
8
, pp.
283
291
.
83.
Hsu
,
L. F.
, and
Kuo
,
S.
, 1995, “
Design of Optimal Maintenance Policies Based on Online Sampling Plans
,”
Eur. J. Oper. Res.
0377-2217,
86
, pp.
345
357
.
84.
Sylvain
,
L.
,
Fazel
,
F.
, and
Stan
,
M.
, 1999, “
Data Mining to Predict Aircraft Component Replacement
,”
IEEE Intell. Syst.
1094-7167,
14
(
6
), pp.
59
65
.
85.
Romanowski
,
C. J.
, and
Nagi
,
R.
, 2001, “
Analysing Maintenance Data Using Data Mining Methods
,”
Data Mining for Design and Manufacture: Methods and Applications
,
D.
Braha
, ed.,
Kluwer Academic
, Dordrecht, pp.
235
254
.
86.
Morita
,
T.
,
Sato
,
Y.
,
Ayukawa
,
E.
, and
Maeda
,
A.
, 2000, “
Customer Relationship Management Through Data Mining
,”
Informs-Korms 2000
,
Seoul, pp.
1956
1963
.
87.
Hui
,
S. C.
, and
Jha
,
G.
, 2000, “
Data Mining for Customer Service Support
,”
Inf. Manage.
0378-7206,
38
, pp.
1
13
.
88.
Rygielski
,
C.
,
Wang
,
J. C.
, and
Yen
,
D. C.
, 2002, “
Data Mining Techniques for Customer Relationship Management
,”
Technol. Soc.
0160-791X,
24
, pp.
483
502
.
89.
Agard
,
B.
, and
Kusiak
,
A.
, 2004, “
Data-Mining Based Methodology for the Design of Product Families
,”
Int. J. Prod. Res.
0020-7543,
42
(
15
), pp.
2955
2969
.
90.
Padmanabhan
,
B.
, and
Tuzhilin
,
A.
, 2003, “
On the Use of Optimization for Data Mining: Theoretical Interactions and eCRM Opportunities
,”
Manage. Sci.
0025-1909,
49
(
10
), pp.
1327
1343
.
You do not currently have access to this content.