This paper presents a combined experimental and computational investigation of a novel material separation mechanism in polycrystalline diamond (PCD) substrates. A hybrid CO2 laser/waterjet (CO2-LWJ) machining system that combines a CO2 laser for localized heating and an abrasive-free waterjet to rapidly quench the heated area is utilized for cutting experiments on PCD substrates. Scanning electron microscopy (SEM) and micro-Raman spectrometry characterization performed on the cut surfaces show that cut surfaces were divided into two zones—a thin transformed zone near the top where the PCD grains have transformed to graphite and diamond-like carbon; and a fracture zone with the same composition as-received substrate. The experimental results indicate that the PCD substrates were cut through a “score and snap” mechanism—laser heating leads to localized damage and phase transformation of surface layers; and subsequently, stress fields developed due to constrained expansion of transformed material and waterjet quenching act on the laser made “score” to propagate crack through the thickness. Analytical solutions for thermal diffusion and force equilibrium are used to determine the temperature and stress fields in the PCD substrate during CO2-LWJ cutting. Fracture mechanics analysis of crack propagation is performed to demonstrate the feasibility of the “score and snap” mechanism for cutting of PCD substrates.

References

1.
Lumley
,
R. M.
,
1969
, “
Controlled Separation of Brittle Materials Using Laser
,”
Am. Ceramic Soc. Bull.
,
48
(
9
), p.
850
.
2.
Elperin
,
T.
, and
Rudin
,
G.
,
2002
, “
Thermal Stresses in Functionally Graded Materials Caused by a Laser Thermal Shock
,”
Heat Mass Transfer
,
38
(
7–8
), pp.
625
630
.10.1007/s002310100252
3.
Kalyanasundaram
,
D.
,
Shehata
,
G.
,
Neumann
,
C.
,
Shrotriya
,
P.
, and
Molian
,
P.
,
2008
, “
Design and Validation of a Hybrid Laser/Water-Jet Machining System for Brittle Materials
,”
J. Laser Appl.
,
20
(
2
), pp.
127
134
.10.2351/1.2900554
4.
Kalyanasundaram
,
D.
,
Shrotriya
,
P.
, and
Molian
,
P.
,
2009
, “
Obtaining a Relationship Between Process Parameters and Fracture Characteristics for Hybrid CO(2) Laser/Waterjet Machining of Ceramics
,”
ASME J. Eng. Mater.
,
131
(
1
), p.
011005
.10.1115/1.3026547
5.
Kalyanasundaram
,
D.
,
Shrotriya
,
P.
, and
Molian
,
P.
,
2010
, “
Fracture Mechanics-Based Analysis for Hybrid Laser/Waterjet (LWJ) Machining of Yttria-Partially Stabilized Zirconia (Y-PSZ)
,”
Int. J. Mach. Tool Manuf.
,
50
(
1
), pp.
97
105
.10.1016/j.ijmachtools.2009.09.002
6.
Shehata
,
G.
,
Molian
,
P. A.
,
Bastawros
,
A.
, and
Shrotriya
,
P.
,
2007
, “
Surface Finish and Flexural Strength of CO2 Laser-Cut Alumina by Evaporative and Thermal Stress Fracture Modes
,”
Transactions of the North American Manufacturing Research Institute, Society of Manufacturing Engineers
, pp.
391
400
.
7.
Lu
,
T. J.
, and
Fleck
,
N. A.
,
1998
, “
The Thermal Shock Resistance of Solids
,”
Acta Mater.
,
46
(
13
), pp.
4755
4768
.10.1016/S1359-6454(98)00127-X
8.
Harrison
,
P. M.
,
Henry
,
M.
, and
Brownell
,
M.
,
2006
, “
Laser Processing of Polycrystalline Diamond, Tungsten Carbide, and a Related Composite Material
,”
J. Laser Appl.
,
18
(
2
), pp.
117
126
.10.2351/1.2164472
9.
Aronsson
,
S. B.
, and
Waldenstrom
,
M. G.
,
1988
,
Diamond Tools for Rock Drilling and Machining
,
U. S. P. Office
.
10.
Katzman
,
H.
, and
Libby
,
W. F.
,
1971
, “
Sintered Diamond Compacts With a Cobalt Binder
,”
Science
,
172
(
3988
), pp.
1132
1134
.10.1126/science.172.3988.1132
11.
Liu
,
X. L.
,
Li
,
Y. F.
,
Yan
,
F. G.
,
Wang
,
Y.
,
Hu
,
J. S.
, and
Wang
,
Y. J.
,
2006
, “
Study on Precision Grinding Technique of PCD Tool's Cutting Edge
,”
Key Engineering Materials
,
304–305
, pp.
186
190
.10.4028/www.scientific.net/KEM.304-305.186
12.
Akaishi
,
M.
, and
Yamaoka
,
S.
,
1996
, “
Physical and Chemical Properties of the Heat Resistant Diamond Compacts From Diamond-Magnesium Carbonate System
,”
Mater. Sci. Eng., A
,
209
(
1–2
), pp.
54
59
.
13.
Irifune
,
T.
,
Kurio
,
A.
,
Sakamoto
,
S.
,
Inoue
,
T.
, and
Sumiya
,
H.
,
2003
, “
Materials—Ultrahard Polycrystalline Diamond From Graphite
,”
Nature
,
421
(
6923
), pp.
599
600
.10.1038/421599b
14.
Harper
,
C. A.
,
2001
,
Handbook of Ceramics, Glasses and Diamonds
,
McGraw–Hill
,
New York
.
15.
Tso
,
P. L.
, and
Liu
,
Y. G.
,
2002
, “
Study on PCD Machining
,”
Int. J. Mach. Tool Manuf.
,
42
(
3
), pp.
331
334
.10.1016/S0890-6955(01)00131-6
16.
Liu
,
Y. H.
,
Guo
,
Y. F.
, and
Liu
,
J. C.
,
1997
, “
Electric Discharge Milling of Polycrystalline Diamond
,”
Proc. Inst. Mech. Eng. Part B
,
211
(
8
), pp.
643
647
.10.1243/0954405981516580
17.
Pei
,
J. Y.
,
Guo
,
C. N.
, and
Hu
,
D. J.
,
2004
, “
Electrical Discharge Grinding of Polycrystalline Diamond
,”
Materials Science Forum
,
471–472
, pp.
457
461
.10.4028/www.scientific.net/MSF.471-472.457
18.
Zaitsev
,
A. M.
,
2001
,
Optical Properties of Diamond: A Data Handbook
,
Springer
,
New York
.
19.
Molian
,
R.
,
Neumann
,
C.
,
Shrotriya
,
P.
, and
Molian
,
P.
,
2008
, “
Novel Laser/Water-Jet Hybrid Manufacturing Process for Cutting Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031008
.10.1115/1.2844592
20.
Molian
,
R.
,
Shrotriya
,
P.
, and
Molian
,
P.
,
2008
, “
Improved Method of CO(2) Laser Cutting of Aluminum Nitride
,”
J. Electron. Packag.
,
130
(
2
), p.
024501
.10.1115/1.2912223
21.
Molian
,
R.
,
Shrotriya
,
P.
, and
Molian
,
P.
,
2008
, “
Thermal Stress Fracture Mode of CO2 Laser Cutting of Aluminum Nitride
,”
Int. J. Adv. Manuf. Technol.
,
39
(
7-8
), pp.
725
733
.10.1007/s00170-007-1270-y
22.
Kalyana-Sundaram
,
D.
,
Wille
,
J.
,
Shrotriya
,
P.
, and
Molian
,
P.
,
2008
, “
CO2 Laser/Waterjet Machining of Polycrystalline Cubic Boron Nitride
,”
Trans. of N. Ame. Mnfg. Res. Inst.
,
36
, pp.
517–524
.
23.
Payne
,
B. P.
,
Nishioka
,
N. S.
,
Mikic
,
B. B.
, and
Venugopalan
,
V.
,
1998
, “
Comparison of Pulsed CO2 Laser Ablation at 10.6 Microm and 9.5 Microm
,”
Lasers Surg. Med.
,
23
(
1
), pp.
1
6
.10.1002/(SICI)1096-9101(1998)23:1<1::AID-LSM1>3.0.CO;2-T
24.
Luk'yanov
,
A. Y.
,
Ral'chenko
,
V. G.
,
Khomich
,
A. V.
,
Serdtsev
,
E. V.
,
Volkov
,
P. V.
,
Savel'ev
,
A. V.
, and
Konov
,
V. I.
,
2008
, “
Measurement of Optical Absorption in Polycrystalline CVD Diamond Plates by the Phase Photothermal Method at a Wavelength of 10.6 μm
,”
Quantum Electron.
,
38
(
12
), pp.
1171
1178
.10.1070/QE2008v038n12ABEH013822
25.
Bex
,
P. A.
, and
Shafto
,
G. R.
,
1984
, “
The Influence of Temperature and Heating Time on PCD Performance
,”
Ind. Diamond Rev.
,
44
(
3
), pp.
128
132
.
26.
Erasmus
,
R. M.
,
Comins
,
J. D.
,
Mofokeng
,
V.
, and
Martin
,
Z.
,
2011
, “
Application of Raman Spectroscopy to Determine Stress in Polycrystalline Diamond Tools as a Function of Tool Geometry and Temperature
,”
Diamond Relat. Mater.
,
20
(
7
), pp.
907
911
.10.1016/j.diamond.2011.03.018
27.
Jungnickel
,
G.
,
Latham
,
C. D.
,
Heggie
,
M. I.
, and
Frauenheim
,
T.
,
1996
, “
On the Graphitization of Diamond Surfaces: The Importance of Twins
,”
Diamond Relat. Mater.
,
5
(
1
), pp.
102
112
.10.1016/0925-9635(96)80012-4
28.
Phinney
,
F. S.
,
1954
, “
Graphitization of Diamond
,”
Science
,
120
(
3114
), pp.
393
394
.10.1126/science.120.3114.393
29.
Ralchenko
,
V.
,
Nistor
,
L.
,
Pleuler
,
E.
,
Khomich
,
A.
,
Vlasov
,
I.
, and
Khmelnitskii
,
R.
,
2003
, “
Structure and Properties of High-Temperature Annealed CVD Diamond
,”
Diamond Relat. Mater.
,
12
(
10
), pp.
1964
1970
.10.1016/S0925-9635(03)00214-0
30.
Wang
,
C. Z.
,
Ho
,
K. M.
,
Shirk
,
M. D.
, and
Molian
,
P. A.
,
2000
, “
Laser-Induced Graphitization on a Diamond (111) Surface
,”
Phys. Rev. Lett.
,
85
(
19
), pp.
4092
4095
.10.1103/PhysRevLett.85.4092
31.
Elperin
,
T.
, and
Rudin
,
G.
,
2004
, “
Controlled Fracture of Nonmetallic Thin Wafers Using a Laser Thermal Shock Method
,”
J. Electron. Packag.
,
126
(
1
), pp.
142
147
.10.1115/1.1649245
32.
Boley
,
B. A.
, and
Weiner
,
J. H.
,
1997
,
Theory of Thermal Stresses
,
Dover Publications, Inc.
,
Mineola, NY
.
33.
Zhao
,
L. G.
,
Lu
,
T. J.
, and
Fleck
,
N. A.
,
2000
, “
Crack Channelling and Spalling in a Plate Due to Thermal Shock Loading
,”
J. Mech. Phys. Solids
,
48
(
5
), pp.
867
897
.10.1016/S0022-5096(99)00064-2
34.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
, The Stress Analysis of Cracks Handbook, 3rd ed.,
Paris Productions and Del Research Group, ASME Press
.10.1115/1.801535
35.
Ashby
,
M. F.
,
2001
,
Materials Selection in Mechanical Design
,
Butterworth-Heinemann
,
Oxford, UK
.
36.
Moelle
,
C.
,
Werner
,
M.
,
Szucs
,
F.
,
Wittorf
,
D.
,
Sellschopp
,
M.
,
von Borany
,
J.
,
Fecht
,
H. J.
, and
Johnston
,
C.
,
1998
, “
Specific Heat of Single-, Poly- and Nanocrystalline Diamond
,”
Diamond Relat. Mater.
,
7
(
2–5
), pp.
499
503
.10.1016/S0925-9635(97)00202-1
37.
Miess
,
D.
, and
Rai
,
G.
,
1996
, “
Fracture Toughness and Thermal Resistance of Polycrystalline Diamond Compacts
,”
Mater. Sci. Eng. A
,
209
(
1–2
), pp.
270
276
.10.1016/0921-5093(95)10105-5
38.
Dorgan
,
K. M.
,
Arwade
,
S. R.
, and
Jumars
,
P. A.
,
2008
, “
Worms as Wedges: Effects of Sediment Mechanics on Burrowing Behavior
,”
J. Marine Res.
,
66
(
2
), pp.
219
254
.10.1357/002224008785837130
39.
Walter
,
R.
,
Ostergaard
,
L.
,
Olesen
,
J. F.
, and
Stang
,
H.
,
2005
, “
Wedge Splitting Test for a Steel-Concrete Interface
,”
Eng. Fract. Mech.
,
72
(
17
), pp.
2565
2583
.10.1016/j.engfracmech.2005.06.001
40.
Xiao
,
J.
,
Schneider
,
H.
,
Dönnecke
,
C.
, and
König
,
G.
,
2004
, “
Wedge Splitting Test on Fracture Behaviour of Ultra High Strength Concrete
,”
Constr. Build. Mater.
,
18
(
6
), pp.
359
365
.10.1016/j.conbuildmat.2004.04.016
41.
Forderreuther
,
A.
,
Thurn
,
G.
,
Zimmermann
,
A.
, and
Aldinger
,
F.
,
2002
, “
R-Curve Effect, Influence of Electric Field and Process Zone in BaTiO3 Ceramics
,”
J. Eur. Ceram. Soc.
,
22
(
12
), pp.
2023
2031
.10.1016/S0955-2219(01)00516-7
You do not currently have access to this content.