Vibration assisted nano impact-machining by loose abrasives (VANILA) is a novel nanomachining process that combines the principles of vibration-assisted abrasive machining, and tip-based nanomachining, to perform target specific nano abrasive machining of hard and brittle materials. An atomic force microscope (AFM) is used as a platform in this process wherein, nano abrasives, injected in slurry between the workpiece and the vibrating AFM probe, impact the workpiece and cause nanoscale material removal. The objective of this study is to develop a mathematical model to determine the material removal rate (MRR) in the VANILA process. The experimental machining results reveal that the material removal happens primarily in ductile mode due to repeated deformation which happens at near normal angles of impact. A predictive model for MRR during the VANILA process is analytically developed based on elastoplastic impact theory for normal angles of impact. The model is validated through a series of experiments performed on silicon and borosilicate glass substrates and the results confirm that the model is capable of predicting the machining results within 10% deviation.

References

1.
Diegoli
,
S.
,
Hamlett
,
C. A. E.
,
Leigh
,
S.
,
Mendes
,
P.
, and
Preece
,
J.
,
2007
, “
Engineering Nanostructures at Surfaces Using Nanolithography
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
221
(
4
), pp.
589
629
.10.1243/09544100JAERO212
2.
Riveros
,
R. E.
,
Hann
,
J. N.
,
Taylor
,
C. R.
, and
Yamaguchi
,
H.
,
2013
, “
Nanoscale Surface Modifications by Magnetic Field-Assisted Finishing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051014
.10.1115/1.4025190
3.
Yan
,
Y.
,
Sun
,
T.
,
Liang
,
Y.
, and
Dong
,
S.
,
2007
, “
Investigation on AFM-Based Micro/Nano-CNC Machining System
,”
Int. J. Mach. Tools Manuf.
,
47
(
11
), pp.
1651
1659
.10.1016/j.ijmachtools.2007.01.008
4.
Malshe
,
A.
,
Rajurkar
,
K.
,
Virwani
,
K.
,
Taylor
,
C.
,
Bourell
,
D.
,
Levy
,
G.
,
Sundaram
,
M.
,
McGeough
,
J.
,
Kalyanasundaram
,
V.
, and
Samant
,
A.
,
2010
, “
Tip-Based Nanomanufacturing by Electrical, Chemical, Mechanical and Thermal Processes
,”
CIRP Annals-Manuf. Technol.
,
59
(
2
), pp.
628
651
.10.1016/j.cirp.2010.05.006
5.
James
,
S.
, and
Sundaram
,
M. M.
,
2012
, “
A Feasibility Study of Vibration Assisted Nano Impact-Machining by Loose Abrasives Using Atomic Force Microscope
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061014
.10.1115/1.4007714
6.
Kumar
,
M.
,
Chang
,
C.-J.
,
Melkote
,
S. N.
, and
Joseph
,
V. R.
,
2013
, “
Modeling and Analysis of Forces in Laser Assisted Micro Milling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041018
.10.1115/1.4024538
7.
Arif
,
M.
,
Rahman
,
M.
, and
San
,
W. Y.
,
2012
, “
A Model to Determine the Effect of Tool Diameter on the Critical Feed Rate for Ductile-Brittle Transition in Milling Process of Brittle Material
,”
ASME J. Manuf. Sci. Eng.
,
134
(5), p.
051012
.10.1115/1.4007462
8.
Ruff
,
A. W.
, and
Wiederhorn
,
S.
,
1979
, “
Erosion by Solid Particle Impact
,”
Treatise on Materials Science and Technology
, Vol.
16
, C. M. Preece (ed.),
Academic
,
New York
, pp.
69
125
.
9.
Ahmed
,
Y.
,
Cong
,
W.
,
Stanco
,
M. R.
,
Xu
,
Z.
,
Pei
,
Z.
,
Treadwell
,
C.
,
Zhu
,
Y.
, and
Li
,
Z.
,
2012
, “
Rotary Ultrasonic Machining of Alumina Dental Ceramics: A Preliminary Experimental Study on Surface and Subsurface Damages
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
064501
.10.1115/1.4007711
10.
Srinivasu
,
D.
, and
Axinte
,
D.
,
2014
, “
Mask-Less Pocket Milling of Composites by Abrasive Waterjets: An Experimental Investigation
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041005
.10.1115/1.4027181
11.
Ichida
,
Y.
,
Sato
,
R.
,
Morimoto
,
Y.
, and
Kobayashi
,
K.
,
2005
, “
Material Removal Mechanisms in Non-Contact Ultrasonic Abrasive Machining
,”
Wear
,
258
(
1
), pp.
107
114
.10.1016/j.wear.2004.05.016
12.
Yamaguchi
,
Y.
, and
Gspann
,
J.
,
2002
, “
Large-Scale Molecular Dynamics Simulations of Cluster Impact and Erosion Processes on a Diamond Surface
,”
Phys. Rev. B
,
66
(
15
), p.
155408
.10.1103/PhysRevB.66.155408
13.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.10.1016/0043-1648(60)90055-7
14.
Kushendarsyah
,
S.
, and
Sathyan
,
S.
,
2013
, “
Orthogonal Microcutting of Thin Workpieces
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031004
.10.1115/1.4023710
15.
Jennings
,
W. H.
,
Head
,
W. J.
, and
Manning
,
C.
,
1976
, “
A Mechanistic Model for the Prediction of Ductile Erosion
,”
Wear
,
40
(
1
), pp.
93
112
.10.1016/0043-1648(76)90021-1
16.
Bitter
,
J
.,
1963
, “
A Study of Erosion Phenomena Part I
,”
Wear
,
6
(
1
), pp.
5
21
.10.1016/0043-1648(63)90003-6
17.
Li
,
K.-M.
,
Hu
,
Y.-M.
,
Yang
,
Z.-Y.
, and
Chen
,
M.-Y.
,
2012
, “
Experimental Study on Vibration-Assisted Grinding
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
041009
.10.1115/1.4007102
18.
Naim
,
M.
, and
Bahadur
,
S.
,
1984
, “
Work Hardening in Erosion Due to Single-Particle Impacts
,”
Wear
,
98
, pp.
15
26
.10.1016/0043-1648(84)90214-X
19.
Virkar
,
S. R.
, and
Patten
,
J. A.
,
2013
, “
Combined Effects of Stress and Temperature During Ductile Mode Microlaser Assisted Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041003
.10.1115/1.4024633
20.
Mulik
,
R. S.
, and
Pandey
,
P. M.
,
2012
, “
Experimental Investigations and Modeling of Finishing Force and Torque in Ultrasonic Assisted Magnetic Abrasive Finishing
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051008
.10.1115/1.4007131
21.
Evans
,
A.
,
Gulden
,
M.
, and
Rosenblatt
,
M.
,
1978
, “
Impact Damage in Brittle Materials in the Elastic-Plastic Response Regime
,”
Proc. R. Soc. London. A
,
361
(
1706
), pp.
343
365
.10.1098/rspa.1978.0106
22.
Marshall
,
D.
,
Lawn
,
B.
, and
Evans
,
A.
,
1982
, “
Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System
,”
J. Am. Ceram. Soc.
,
65
(
11
), pp.
561
566
.10.1111/j.1151-2916.1982.tb10782.x
23.
Aquaro
,
D.
, and
Fontani
,
E.
,
2001
, “
Erosion of Ductile and Brittle Materials
,”
Meccanica
,
36
(
6
), pp.
651
661
.10.1023/A:1016396719711
24.
Wakuda
,
M.
,
Yamauchi
,
Y.
, and
Kanzaki
,
S.
,
2002
, “
Effect of Workpiece Properties on Machinability in Abrasive Jet Machining of Ceramic Materials
,”
Precis. Eng.
,
26
(
2
), pp.
193
198
.10.1016/S0141-6359(01)00114-3
25.
Wiederhorn
,
S.
, and
Hockey
,
B.
,
1983
, “
Effect of Material Parameters on the Erosion Resistance of Brittle Materials
,”
J. Mater. Sci.
,
18
(
3
), pp.
766
780
.10.1007/BF00745575
26.
Evans
,
A.
, and
Wilshaw
,
T. R.
,
1976
, “
Quasi-Static Solid Particle Damage in Brittle Solids—I. Observations Analysis and Implications
,”
Acta Metall.
,
24
(
10
), pp.
939
956
.10.1016/0001-6160(76)90042-0
27.
Revenko
,
I.
, and
Proksch
,
R.
,
2000
, “
Magnetic and Acoustic Tapping Mode Microscopy of Liquid Phase Phospholipid Bilayers and DNA Molecules
,”
J. Appl. Phys.
,
87
(
1
), pp.
526
533
.10.1063/1.371894
28.
Rogers
,
B.
,
York
,
D.
,
Whisman
,
N.
,
Jones
,
M.
,
Murray
,
K.
,
Adams
,
J.
,
Sulchek
,
T.
, and
Minne
,
S.
,
2002
, “
Tapping Mode Atomic Force Microscopy in Liquid With an Insulated Piezoelectric Microactuator
,”
Rev. Sci. Instrum.
,
73
(
9
), pp.
3242
3244
.10.1063/1.1499532
29.
Zarepour
,
H.
, and
Yeo
,
S.
,
2012
, “
Predictive Modeling of Material Removal Modes in Micro Ultrasonic Machining
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
13
23
.10.1016/j.ijmachtools.2012.06.005
30.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
.10.1016/S0094-114X(02)00045-9
31.
Wu
,
J.
,
Zhou
,
S.
, and
Li
,
X.
,
2013
, “
Acoustic Emission Monitoring for Ultrasonic Cavitation Based Dispersion Process
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031015
.10.1115/1.4024041
32.
Sahin
,
O.
,
Quate
,
C. F.
,
Solgaard
,
O.
, and
Atalar
,
A.
,
2004
, “
Resonant Harmonic Response in Tapping-Mode Atomic Force Microscopy
,”
Phys. Rev. B
,
69
(
16
), p.
165416
.10.1103/PhysRevB.69.165416
33.
Hibbeler
,
R.
,
2003
,
Engineering Mechanics Dynamics (International Edition)
,
Macmillan Publishing Company
,
New York
.
34.
Booij
,
S. M.
,
2003
,
Fluid Jet Polishing: Possibilities and Limitations of a New Fabrication Technique
.
35.
Sooraj
,
V.
, and
Radhakrishnan
,
V.
,
2013
, “
Elastic Impact of Abrasives for Controlled Erosion in Fine Finishing of Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051019
.10.1115/1.4025338
36.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.10.1115/1.555332
37.
Lawn
,
B. R.
, and
Marshall
,
D.
,
1978
, “
Indentation Fracture and Strength Degradation in Ceramics
,”
Flaws and Testing
,
Springer
, pp.
205
229
.
38.
Ganguly
,
V.
,
Schmitz
,
T.
,
Graziano
,
A.
, and
Yamaguchi
,
H.
,
2013
, “
Force Measurement and Analysis for Magnetic Field–Assisted Finishing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041016
.10.1115/1.4023723
39.
Shipway
,
P.
, and
Hutchings
,
I.
,
1994
, “
A Method for Optimizing the Particle Flux in Erosion Testing With a Gas-Blast Apparatus
,”
Wear
,
174
(
1
), pp.
169
175
.10.1016/0043-1648(94)90099-X
You do not currently have access to this content.