Butt welding tests of 1.5 mm thickness Ti–6Al–4V were treated by conventional gas tungsten arc welding (C-GTAW) and ultrahigh frequency pulse GTAW (UHFP-GTAW). The low cycle fatigue (LCF) experiments were conducted on the welded joints. The results of fatigue experiment showed that the number of fatigue cycles was increased with UHFP-GTAW. Changes in the microstructure resulting from reduced heat input were expected to enhance the fatigue propagation resistance. The morphology of the martensites in fusion zone was smaller compared to C-GTAW process, and a larger distribution density of basketweave structure was also obtained by UHFP-GTAW. Furthermore, the decreased fatigue crack rate was accompanied as the increased grain boundaries produced by the reduced grain size in fusion zone. Observation of fatigue fractographs revealed that the UHFP-GTAW has obvious slip traces at fatigue initiation sites and more deep secondary cracks in the crack propagation regions associated with the smaller dimples of final fracture zones. The proportion of propagation regions was much larger than C-GTAW. As a result, it can be considered as the representation of the improvement in ductility.

References

1.
Boyer
,
R. R.
,
1996
, “
An Overview on the Use of Titanium in the Aerospace Industry
,”
Mater. Sci. Eng.: A
,
213
(
1–2
), pp.
103
114
.
2.
Nandan
,
R.
,
DebRoy
,
T.
, and
Bhadeshia
,
H. K. D. H.
,
2008
, “
Recent Advances in Friction-Stir Welding Process, Weldment Structure and Properties
,”
Prog. Mater. Sci.
,
53
(
6
), pp.
980
1023
.
3.
Short
,
A. B.
,
2009
, “
Gas Tungsten Arc Welding of α + β Titanium Alloys: A Review
,”
Mater. Sci. Technol.
,
25
(
3
), pp.
309
324
.
4.
Schaffer
,
J. P.
,
Saxena
,
A.
,
Antolovich
,
S. D.
,
Sanders
,
T. H.
, Jr.
, and
Warner
,
S. B.
,
1999
,
The Science and Design of Engineering Materials
, 2nd ed.,
McGraw-Hill
,
New York
, p.
399
.
5.
Balasubramanian
,
T. S.
,
Balasubramanian
,
V.
, and
Manickam
,
M. A. M.
,
2011
, “
Fatigue Crack Growth Behaviour of Gas Tungsten Arc, Electron Beam and Laser Beam Welded Ti-6Al-4V Alloy
,”
Mater. Des.
,
32
(
8–9
), pp.
4509
4520
.
6.
Liu
,
J.
,
Gao
,
X. L.
,
Zhang
,
L. J.
, and
Zhang
,
J. X.
,
2014
, “
A Study of Fatigue Damage Evolution on Pulsed Nd:YAG Ti-6Al-4V Laser Welded Joints
,”
Eng. Fract. Mech.
,
117
, pp.
84
93
.
7.
Wang
,
X. D.
,
Shi
,
Q. Y.
,
Wang
,
X.
, and
Zhang
,
Z. L.
,
2010
, “
The Influences of Precrack Orientations in Welded Joint of Ti-6Al-4V on Fatigue Crack Growth
,”
Mater. Sci. Eng.: A
,
527
(
4–5
), pp.
1008
1015
.
8.
Radaj
,
D.
,
1997
,
Heat Effects of Welding: Temperature Field, Residual Stress and Distortion
, 1st ed.,
D. J.
Xiong
,
C. Y.
Zheng
, and
Y. W.
Shi
, eds.,
China Machine Press
,
Beijing, China
, p.
334
.
9.
Ravichandran
,
K. S.
,
1991
, “
Near Threshold Fatigue Crack Growth Behavior of a Titanium Alloy: Ti-6A1-4V
,”
Acta Metall. Mater.
,
39
(
3
), pp.
401
410
.
10.
Yoder
,
G. R.
, and
Eylon
,
D.
,
1979
, “
On the Effect of Colony Size on Fatigue Crack Growth in Widmanstätten Structure α+β Titanium Alloys
,”
Metall. Trans. A
,
10
(
11
), pp.
1808
1810
.
11.
Yang
,
X. G.
,
Li
,
S. L.
, and
Qi
,
H. Y.
,
2014
, “Ti-6Al-4V Welded Joints via Electron Beam Welding: Microstructure, Fatigue Properties, and Fracture Behavior,”
Mater. Sci. Eng.: A
,
597
, pp.
225
231
.
12.
Tsay
,
L. W.
, and
Tsay
,
C. Y.
,
1997
, “
The Effect of Microstructures on the Fatigue Crack Growth in Ti-6Al-4V Laser Welds
,”
Int. J. Fatigue
,
19
(
10
), pp.
713
720
.
13.
Murthy
,
K. K.
, and
Sundaresan
,
S.
,
1997
, “
Fatigue Crack Growth Behavior in a Welded α-β Ti-Al-Mn Alloy in Relation to Micro Structural Features
,”
Mater. Sci. Eng.: A
,
222
(
2
), pp.
201
211
.
14.
Balasubramanian
,
M.
,
Jayabalan
,
V.
, and
Balasubramanian
,
V.
,
2008
, “
Developing Mathematical Models to Predict Tensile Properties of Pulsed Current Gas Tungsten Arc Welded Ti-6Al-4V Alloy
,”
Mater. Des.
,
29
(
1
), pp.
92
97
.
15.
Reddy
,
G. M.
,
Gokhale
,
A. A.
, and
Rao
,
K. P.
,
1998
, “
Optimisation of Pulse Frequency in Pulsed Current Gas Tungsten Arc Welding of Aluminium–Lithium Alloy Sheets
,”
Mater. Sci. Technol.
,
14
(
1
), pp.
61
66
.
16.
Kishore
,
B. N.
,
Ganesh
,
S. R. S.
,
Mythili
,
R.
, and
Saroja
,
S.
,
2007
, “
Correlation of Microstructure With Mechanical Properties of TIG Weldments of Ti-6Al-4V Made With and Without Current Pulsing
,”
Mater. Charact.
,
58
(
7
), pp.
581
587
.
17.
Sundaresan
,
S.
,
Ram
,
G. D. J.
, and
Reddy
,
G. M.
,
1999
, “
Microstructural Refinement of Weld Fusion Zones in a–α-β Titanium Alloys Using Pulsed Current Welding
,”
Mater. Sci. Eng.: A
,
262
(
1–2
), pp.
88
100
.
18.
DebRoy
,
T.
, and
David
,
S. A.
,
1995
, “
Physical Processes in Fusion Welding
,”
Rev. Mod. Phys.
,
67
(
1
), pp.
85
112
.
19.
Yang
,
M. X.
,
Qi
,
B. J.
,
Cong
,
B. Q.
,
Liu
,
F. J.
,
Yang
,
Z.
, and
Chu
,
P. K.
,
2013
, “
Study on Electromagnetic Force in Arc Plasma With UHFP-GTAW of Ti-6Al-4V
,”
IEEE Trans. Plasma Sci.
,
41
(
9
), pp.
2561
2568
.
20.
Yang
,
M. X.
,
Qi
,
B. J.
,
Cong
,
B. Q.
,
Liu
,
F. J.
, and
Yang
,
Z.
,
2013
, “
Effect of Pulse Frequency on Microstructure and Properties of Ti-6Al-4V by Ultrahigh-Frequency Pulse Gas Tungsten Arc Welding
,”
Int. J. Adv. Manuf. Technol.
,
68
(
1
), pp.
19
31
.
21.
Yang
,
Z.
,
Qi
,
B. J.
,
Cong
,
B. Q.
,
Liu
,
F. J.
, and
Yang
,
M. X.
,
2015
, “
Microstructure, Tensile Properties of Ti-6Al-4V by Ultra High Pulse Frequency GTAW With Low Duty Cycle
,”
J. Mater. Process. Technol.
,
216
, pp.
37
47
.
You do not currently have access to this content.