A growing research trend in additive manufacturing (AM) calls for layerwise anomaly detection as a step toward enabling real-time process control, in contrast to ex situ or postprocess testing and characterization. We propose a method for layerwise anomaly detection during laser powder-bed fusion (L-PBF) metal AM. The method uses high-speed thermal imaging to capture melt pool temperature and is composed of the following four-step anomaly detection procedure: (1) using the captured thermal images, a process signature of a just-fabricated layer is generated. Next, a signature difference is obtained by subtracting the process signature of that particular layer from a prespecified reference signature, (2) a screening step selects potential regions of interests (ROIs) within the layer that are likely to contain process anomalies, hence reducing the computational burden associated with analyzing the full layer data, (3) the spatial dependence of these ROIs is modeled using a Gaussian process model, and then pixels with statistically significant deviations are flagged, and (4) using the quantity and the spatial pattern of the flagged pixels as predictors, a classifier is trained and implemented to determine whether the process is in- or out-of-control. We validate the proposed method using a case study on a commercial L-PBF system custom-instrumented with a dual-wavelength imaging pyrometer for capturing the thermal images during fabrication.

References

1.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
2.
Tolosa
,
I.
,
Garciandía
,
F.
,
Zubiri
,
F.
,
Zapirain
,
F.
, and
Esnaola
,
A.
,
2010
, “
Study of Mechanical Properties of AISI 316 Stainless Steel Processed by ‘Selective Laser Melting’, Following Different Manufacturing Strategies
,”
Int. J. Adv. Manuf. Technol.
,
51
(
5–8
), pp.
639
647
.
3.
Garibaldi
,
M.
,
Ashcroft
,
I.
,
Simonelli
,
M.
, and
Hague
,
R.
,
2016
, “
Metallurgy of High-Silicon Steel Parts Produced Using Selective Laser Melting
,”
Acta Mater.
,
110
, pp.
207
216
.
4.
Mahmoudi
,
M.
,
Elwany
,
A.
,
Yadollahi
,
A.
,
Thompson
,
S. M.
,
Bian
,
L.
, and
Shamsaei
,
N.
,
2017
, “
Mechanical Properties and Microstructural Characterization of Selective Laser Melted 17-4 PH Stainless Steel
,”
Rapid Prototyping J.
,
23
(
2
), pp.
280
294
.
5.
Facchini
,
L.
,
Vicente
,
N.
,
Lonardelli
,
I.
,
Magalini
,
E.
,
Robotti
,
P.
, and
Molinari
,
A.
,
2010
, “
Metastable Austenite in 17–4 Precipitation-Hardening Stainless Steel Produced by Selective Laser Melting
,”
Adv. Eng. Mater.
,
12
(
3
), pp.
184
188
.
6.
Masoomi
,
M.
,
Shamsaei
,
N.
,
Winholtz
,
R. A.
,
Milner
,
J.
,
Gnäupel-Herold
,
T.
,
Elwany
,
A.
,
Mahmoudi
,
M.
, and
Thompson
,
S. M.
,
2017
, “
Residual Stress Measurements Via Neutron Diffraction of Additive Manufactured Stainless Steel 17-4 PH
,”
Data Brief
,
13
, pp. 408–414.
7.
Yadollahi
,
A.
,
Shamsaei
,
N.
,
Thompson
,
S. M.
,
Elwany
,
A.
,
Bian
,
L.
, and
Mahmoudi
,
M.
,
2015
, “
Fatigue Behavior of Selective Laser Melted 17-4 PH Stainless Steel
,”
26th International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 10–12
, pp.
721
731
.
8.
Li
,
S.
,
Hassanin
,
H.
,
Attallah
,
M. M.
,
Adkins
,
N. J.
, and
Essa
,
K.
,
2016
, “
The Development of TiNi-Based Negative Poisson's Ratio Structure Using Selective Laser Melting
,”
Acta Mater.
,
105
, pp.
75
83
.
9.
Murr
,
L.
,
Quinones
,
S.
,
Gaytan
,
S.
,
Lopez
,
M.
,
Rodela
,
A.
,
Martinez
,
E.
,
Hernandez
,
D.
,
Martinez
,
E.
,
Medina
,
F.
, and
Wicker
,
R.
,
2009
, “
Microstructure and Mechanical Behavior of Ti–6Al–4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
), pp.
20
32
.
10.
El-Desouky
,
A.
,
Carter
,
M.
,
Mahmoudi
,
M.
,
Elwany
,
A.
, and
LeBlanc
,
S.
,
2017
, “
Influences of Energy Density on Microstructure and Consolidation of Selective Laser Melted Bismuth Telluride Thermoelectric Powder
,”
J. Manuf. Process.
,
25
, pp.
411
417
.
11.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,”
J. Alloys Compd.
,
585
, pp.
713
721
.
12.
Franco
,
B.
,
Ma
,
J.
,
Loveall
,
B.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Liu
,
J.
,
Elwany
,
A.
,
Arroyave
,
R.
, and
Karaman
,
I.
,
2017
, “
A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts
,”
Sci. Rep.
,
7
(1), p. 3604.https://www.nature.com/articles/s41598-017-03499-x
13.
Ma
,
J.
,
Franco
,
B.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Johnson
,
L.
,
Liu
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2017
, “
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
,”
Sci. Rep.
,
7
(1), p. 46707.https://www.nature.com/articles/srep46707
14.
Tapia
,
G.
,
Johnson
,
L.
,
Franco
,
B.
,
Karayagiz
,
K.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2017
, “
Bayesian Calibration and Uncertainty Quantification for a Physics-Based Precipitation Model of Nickel–Titanium Shape-Memory Alloys
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071002
.
15.
Elahinia
,
M.
,
Moghaddam
,
N. S.
,
Andani
,
M. T.
,
Amerinatanzi
,
A.
,
Bimber
,
B. A.
, and
Hamilton
,
R. F.
,
2016
, “
Fabrication of NiTi Through Additive Manufacturing: A Review
,”
Prog. Mater. Sci.
,
83
, pp.
630
663
.
16.
Bormann
,
T.
,
Schumacher
,
R.
,
Müller
,
B.
,
Mertmann
,
M.
, and
de Wild
,
M.
,
2012
, “
Tailoring Selective Laser Melting Process Parameters for NiTi Implants
,”
J. Mater. Eng. Perform.
,
21
(
12
), pp.
2519
2524
.
17.
Haberland
,
C.
,
Elahinia
,
M.
,
Walker
,
J. M.
,
Meier
,
H.
, and
Frenzel
,
J.
,
2014
, “
On the Development of High Quality NiTi Shape Memory and Pseudoelastic Parts by Additive Manufacturing
,”
Smart Mater. Struct.
,
23
(
10
), p.
104002
.
18.
Walker
,
J. M.
,
Haberland
,
C.
,
Taheri Andani
,
M.
,
Karaca
,
H. E.
,
Dean
,
D.
, and
Elahinia
,
M.
,
2016
, “
Process Development and Characterization of Additively Manufactured Nickel–Titanium Shape Memory Parts
,”
J. Intell. Mater. Syst. Struct.
,
27
(
19
), pp.
2653
2660
.
19.
Parthasarathy
,
J.
,
Starly
,
B.
, and
Raman
,
S.
,
2011
, “
A Design for the Additive Manufacture of Functionally Graded Porous Structures With Tailored Mechanical Properties for Biomedical Applications
,”
J. Manuf. Process.
,
13
(
2
), pp.
160
170
.
20.
Muller
,
P.
,
Mognol
,
P.
, and
Hascoet
,
J.-Y.
,
2013
, “
Modeling and Control of a Direct Laser Powder Deposition Process for Functionally Graded Materials (FGM) Parts Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
5
), pp.
685
692
.
21.
Kempen
,
K.
,
Thijs
,
L.
,
Vrancken
,
B.
,
Buls
,
S.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.
,
2013
, “
Producing Crack-Free, High Density M2 HSS Parts by Selective Laser Melting: Pre-Heating the Baseplate
,”
24th International Solid Freeform Fabrication Symposium.
(
SFF
),
Austin, TX
,
Aug. 12–14
, pp.
131
139
.http://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-10-Kempen.pdf
22.
Sames
,
W. J.
,
List
,
F.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
23.
Gu
,
H.
,
Gong
,
H.
,
Pal
,
D.
,
Rafi
,
K.
,
Starr
,
T.
, and
Stucker
,
B.
,
2013
, “
Influences of Energy Density on Porosity and Microstructure of Selective Laser Melted 17-4PH Stainless Steel
,”
Solid Freeform Fabrication Symposium
(
SFF
),
Austin, TX
,
Aug. 12–14
, p.
474
.https://www.researchgate.net/publication/280114488_Influences_of_Energy_Density_on_Porosity_and_Microstructure_of_Selective_Laser_Melted_17-4PH_Stainless_Steel
24.
Kleszczynski
,
S.
,
Zur Jacobsmühlen
,
J.
,
Sehrt
,
J.
, and
Witt
,
G.
,
2012
, “
Error Detection in Laser Beam Melting Systems by High Resolution Imaging
,”
23rd Annual International Solid Freeform Fabrication Symposium
(
SFF
),
Austin, TX
,
Aug. 6–8
, pp. 975–987.http://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-74-Kleszczynski.pdf
25.
Bertoli
,
U. S.
,
Wolfer
,
A. J.
,
Matthews
,
M. J.
,
Delplanque
,
J.-P. R.
, and
Schoenung
,
J. M.
,
2017
, “
On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting
,”
Mater. Des.
,
113
, pp.
331
340
.
26.
Averyanova
,
M.
,
Cicala
,
E.
,
Bertrand
,
P.
, and
Grevey
,
D.
,
2012
, “
Experimental Design Approach to Optimize Selective Laser Melting of Martensitic 17-4 PH Powder—Part I: Single Laser Tracks and First Layer
,”
Rapid Prototyping J.
,
18
(
1
), pp.
28
37
.
27.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
.
28.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2017
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316l Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(9–12), pp. 3591–3603.
29.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
30.
Megahed
,
M.
,
Mindt
,
H.-W.
,
N'Dri
,
N.
,
Duan
,
H.
, and
Desmaison
,
O.
,
2016
, “
Metal Additive-Manufacturing Process and Residual Stress Modeling
,”
Integr. Mater. Manuf. Innovation
,
5
(
1
), p.
4
.
31.
Zhang
,
D.
,
Cai
,
Q.
,
Liu
,
J.
,
Zhang
,
L.
, and
Li
,
R.
,
2010
, “
Select Laser Melting of W–Ni–Fe Powders: Simulation and Experimental Study
,”
Int. J. Adv. Manuf. Technol.
,
51
(
5–8
), pp.
649
658
.
32.
Masoomi
,
M.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2017
, “
Laser Powder Bed Fusion of Ti–6Al–4V Parts: Thermal Modeling and Mechanical Implications
,”
Int. J. Mach. Tools Manuf.
,
118–119
, pp.
73
90
.
33.
Mani
,
M.
,
Feng
,
S.
,
Lane
,
B.
,
Donmez
,
A.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
, “
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,” U. S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD,
Report No. 8036
https://www.nist.gov/publications/measurement-science-needs-real-time-control-additive-manufacturing-powder-bed-fusion.
34.
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2017
, “
Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
Meas. Sci. Technol.
,
28
(
4
), p.
044005
.
35.
Kerwien
,
S.
,
Collings
,
S.
,
Liou
,
F.
, and
Bytnar
,
M.
,
2013
, “
Measurement Science Roadmap for Metal-Based Additive Manufacturing
,” National Institute of Standards and Technology, Gaithersburg, MD,
Report
.https://www.nist.gov/sites/default/files/documents/el/isd/NISTAdd_Mfg_Report_FINAL-2.pdf
36.
Rao
,
P. K.
,
Liu
,
J. P.
,
Roberson
,
D.
,
Kong
,
Z. J.
, and
Williams
,
C.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
.
37.
Kousiatza
,
C.
, and
Karalekas
,
D.
,
2016
, “
In-Situ Monitoring of Strain and Temperature Distributions During Fused Deposition Modeling Process
,”
Mater. Des.
,
97
, pp.
400
406
.
38.
Bastani
,
K.
,
Rao
,
P. K.
, and
Kong
,
Z.
,
2016
, “
An Online Sparse Estimation-Based Classification Approach for Real-Time Monitoring in Advanced Manufacturing Processes From Heterogeneous Sensor Data
,”
IIE Trans.
,
48
(
7
), pp.
579
598
.
39.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Bian
,
L.
, and
Tschopp
,
M. A.
,
2017
, “
A Methodology for Predicting Porosity From Thermal Imaging of Melt Pools in Additive Manufacturing Thin Wall Sections
,”
ASME
Paper No. MSEC2017-2909.
40.
Abdelrahman
,
M.
,
Reutzel
,
E. W.
,
Nassar
,
A. R.
, and
Starr
,
T. L.
,
2017
, “
Flaw Detection in Powder Bed Fusion Using Optical Imaging
,”
Addit. Manuf.
,
15
, pp.
1
11
.
41.
Aminzadeh
,
M.
, and
Kurfess
,
T.
,
2016
, “
Vision-Based Inspection System for Dimensional Accuracy in Powder-Bed Additive Manufacturing
,”
ASME
Paper No. MSEC2016-8674.
42.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1–4
, pp.
87
98
.
43.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Ram
,
G. J.
,
Starr
,
T.
, and
Stucker
,
B.
,
2015
, “
Influence of Defects on Mechanical Properties of Ti–6Al–4V Components Produced by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
86
, pp.
545
554
.
44.
Spears
,
T. G.
, and
Gold
,
S. A.
,
2016
, “
In-Process Sensing in Selective Laser Melting (SLM) Additive Manufacturing
,”
Integr. Mater. Manuf. Innovation
,
5
(
1
), p.
2
.
45.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
46.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
, and
Craeghs
,
T.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
Third International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, Sept. 24–29, pp.
521
527
.https://core.ac.uk/download/pdf/34389507.pdf
47.
Craeghs
,
T.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J.-P.
,
2010
, “
Feedback Control of Layerwise Laser Melting Using Optical Sensors
,”
Phys. Procedia
,
5
, pp.
505
514
.
48.
Berumen
,
S.
,
Bechmann
,
F.
,
Lindner
,
S.
,
Kruth
,
J.-P.
, and
Craeghs
,
T.
,
2010
, “
Quality Control of Laser- and Powder Bed-Based Additive Manufacturing (AM) Technologies
,”
Phys. Procedia
,
5
, pp.
617
622
.
49.
Craeghs
,
T.
,
Clijsters
,
S.
,
Kruth
,
J.-P.
,
Bechmann
,
F.
, and
Ebert
,
M.-C.
,
2012
, “
Detection of Process Failures in Layerwise Laser Melting With Optical Process Monitoring
,”
Phys. Procedia
,
39
, pp.
753
759
.
50.
Clijsters
,
S.
,
Craeghs
,
T.
,
Buls
,
S.
,
Kempen
,
K.
, and
Kruth
,
J.-P.
,
2014
, “
In Situ Quality Control of the Selective Laser Melting Process Using a High-Speed, Real-Time Melt Pool Monitoring System
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5–8
), pp.
1089
1101
.
51.
Krauss
,
H.
,
Eschey
,
C.
, and
Zaeh
,
M.
,
2012
, “
Thermography for Monitoring the Selective Laser Melting Process
,”
Solid Freeform Fabrication Symposium
(
SFF
),
Austin, TX
,
Aug. 6–8
, pp.
999
1014
.http://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-76-Krauss.pdf
52.
Krauss
,
H.
,
Zeugner
,
T.
, and
Zaeh
,
M. F.
,
2014
, “
Layerwise Monitoring of the Selective Laser Melting Process by Thermography
,”
Phys. Procedia
,
56
, pp.
64
71
.
53.
Chivel
,
Y.
, and
Smurov
,
I.
,
2010
, “
On-Line Temperature Monitoring in Selective Laser Sintering/Melting
,”
Phys. Procedia
,
5
, pp.
515
521
.
54.
Pavlov
,
M.
,
Doubenskaia
,
M.
, and
Smurov
,
I.
,
2010
, “
Pyrometric Analysis of Thermal Processes in SLM Technology
,”
Phys. Procedia
,
5
, pp.
523
531
.
55.
Doubenskaia
,
M.
,
Pavlov
,
M.
,
Grigoriev
,
S.
,
Tikhonova
,
E.
, and
Smurov
,
I.
,
2012
, “
Comprehensive Optical Monitoring of Selective Laser Melting
,”
J. Laser Micro/Nanoeng.
,
7
(
3
), pp. 236–243.http://www.jlps.gr.jp/jlmn/upload/1636e63b04e3c9564a2568d78613db63.pdf
56.
Chivel
,
Y.
,
2013
, “
Optical In-Process Temperature Monitoring of Selective Laser Melting
,”
Phys. Procedia
,
41
, pp.
904
910
.
57.
Doubenskaia
,
M.
,
Grigoriev
,
S.
,
Zhirnov
,
I.
, and
Smurov
,
I.
,
2016
, “
Parametric Analysis of SLM Using Comprehensive Optical Monitoring
,”
Rapid Prototyping J.
,
22
(
1
), pp.
40
50
.
58.
Grasso
,
M.
,
Demir
,
A.
,
Previtali
,
B.
, and
Colosimo
,
B.
,
2018
, “
In Situ Monitoring of Selective Laser Melting of Zinc Powder Via Infrared Imaging of the Process Plume
,”
Rob. Comput.-Integr. Manuf.
,
49
, pp.
229
239
.
59.
EOS
,
2018
, “
Eostate Monitoring Suite—Real-Time Monitoring for Industrial 3D Printing
,” EOS, accessed Sept. 30, 2018, https://www.eos.info/software/monitoring-software.
60.
Renishaw
,
2018
, “
Infiniam Spectral
,” Renishaw, accessed Sept. 30, 2018, http://www.renishaw.com/en/infiniam-spectral--42310
61.
Grasso
,
M.
,
Laguzza
,
V.
,
Semeraro
,
Q.
, and
Colosimo
,
B. M.
,
2017
, “
In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051001
.
62.
Khanzadeh
,
M.
,
Rao
,
P.
,
Jafari-Marandi
,
R.
,
Smith
,
B. K.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Quantifying Geometric Accuracy With Unsupervised Machine Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031011
.
63.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Tschopp
,
M. A.
,
Doude
,
H. R.
,
Marufuzzaman
,
M.
, and
Bian
,
L.
,
2017
, “
In-Situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes
,”
IISE Trans.
(accepted).
64.
Vaughan
,
A.
,
Jun
,
M.
, and
Park
,
C.
,
2012
, “
Statistical Inference and Visualization in Scale-Space for Spatially Dependent Images
,”
J. Korean Stat. Soc.
,
41
(
1
), pp.
115
135
.
65.
Fuentes
,
M.
,
2001
, “
A High Frequency Kriging Approach for Non-Stationary Environmental Processes
,”
Environmetrics
,
12
(
5
), pp.
469
483
.
66.
Michalski
,
L.
,
Eckersdorf
,
K.
, and
McGhee
,
J.
,
1991
,
Temperature Measurement
,
Wiley
, Chichester, UK.
67.
Müller
,
B.
, and
Renz
,
U.
,
2001
, “
Development of a Fast Fiber-Optic Two-Color Pyrometer for the Temperature Measurement of Surfaces With Varying Emissivities
,”
Rev. Sci. Instrum.
,
72
(
8
), pp.
3366
3374
.
68.
Hijazi
,
A.
,
Sachidanandan
,
S.
,
Singh
,
R.
, and
Madhavan
,
V.
,
2011
, “
A Calibrated Dual-Wavelength Infrared Thermometry Approach With Non-Greybody Compensation for Machining Temperature Measurements
,”
Meas. Sci. Technol.
,
22
(
2
), p.
025106
.
69.
Heigel
,
J. C.
, and
Lane
,
B. M.
,
2017
, “
Measurement of the Melt Pool Length During Single Scan Tracks in a Commercial Laser Powder Bed Fusion Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(5), pp. 051012.
70.
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Heulens
,
J.
, and
Pandelaers
,
L.
,
2009
, “
A Pragmatic Model for Selective Laser Melting With Evaporation
,”
Acta Mater.
,
57
(
20
), pp.
6006
6012
.
71.
Loh
,
L.-E.
,
Chua
,
C.-K.
,
Yeong
,
W.-Y.
,
Song
,
J.
,
Mapar
,
M.
,
Sing
,
S.-L.
,
Liu
,
Z.-H.
, and
Zhang
,
D.-Q.
,
2015
, “
Numerical Investigation and an Effective Modelling on the Selective Laser Melting (SLM) Process With Aluminium Alloy 6061
,”
Int. J. Heat Mass Transfer
,
80
, pp.
288
300
.
72.
Masmoudi
,
A.
,
Bolot
,
R.
, and
Coddet
,
C.
,
2015
, “
Investigation of the Laser–Powder–Atmosphere Interaction Zone During the Selective Laser Melting Process
,”
J. Mater. Process. Technol.
,
225
, pp.
122
132
.
73.
Qiu
,
C.
,
Panwisawas
,
C.
,
Ward
,
M.
,
Basoalto
,
H. C.
,
Brooks
,
J. W.
, and
Attallah
,
M. M.
,
2015
, “
On the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting
,”
Acta Mater.
,
96
, pp.
72
79
.
74.
Aboutaleb
,
A. M.
,
Bian
,
L.
,
Elwany
,
A.
,
Shamsaei
,
N.
,
Thompson
,
S. M.
, and
Tapia
,
G.
,
2017
, “
Accelerated Process Optimization for Laser-Based Additive Manufacturing by Leveraging Similar Prior Studies
,”
IISE Trans.
,
49
(
1
), pp.
31
44
.
75.
Gonzalez
,
R. C.
, and
Woods
,
R. E.
,
2008
,
Digital Image Processing
,
Prentice Hall
, Upper Saddle River,
NJ
.
76.
Rasmussen
,
C. E.
, and
Williams
,
C. K.
,
2006
,
Gaussian Processes for Machine Learning
, Vol.
1
,
MIT Press
,
Cambridge, MA
.
77.
Chaudhuri
,
P.
, and
Marron
,
J. S.
,
1999
, “
Sizer for Exploration of Structures in Curves
,”
J. Am. Stat. Assoc.
,
94
(
447
), pp.
807
823
.
78.
Godtliebsen
,
F.
,
Marron
,
J. S.
, and
Chaudhuri
,
P.
,
2004
, “
Statistical Significance of Features in Digital Images
,”
Image Vision Comput.
,
22
(
13
), pp.
1093
1104
.
79.
Tarjan
,
R.
,
1972
, “
Depth-First Search and Linear Graph Algorithms
,”
SIAM J. Comput.
,
1
(
2
), pp.
146
160
.
80.
Suriano
,
S.
,
Wang
,
H.
,
Shao
,
C.
,
Hu
,
S. J.
, and
Sekhar
,
P.
,
2015
, “
Progressive Measurement and Monitoring for Multi-Resolution Data in Surface Manufacturing Considering Spatial and Cross Correlations
,”
IIE Trans.
,
47
(
10
), pp.
1033
1052
.
81.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
, 2nd ed.,
Springer
,
New York
.
82.
Toeppel
,
T.
,
Schumann
,
P.
,
Ebert
,
M.-C.
,
Bokkes
,
T.
,
Funke
,
K.
,
Werner
,
M.
,
Zeulner
,
F.
,
Bechmann
,
F.
, and
Herzog
,
F.
,
2016
, “
3D Analysis in Laser Beam Melting Based on Real-Time Process Monitoring
,”
Materials Science and Technology Conference
, Salt Lake City, UT, Oct. 23–27, pp. 123–132.http://publica.fraunhofer.de/documents/N-421440.html
83.
Elkan
,
C.
,
2001
, “
The Foundations of Cost-Sensitive Learning
,”
International Joint Conference on Artificial Intelligence
(
IJCAI'01
),
Seattle, WA
,
Aug. 4–10
, Vol.
17
, pp.
973
978
.http://web.cs.iastate.edu/~honavar/elkan.pdf
You do not currently have access to this content.