This paper aims at providing a state-of-the-art review of an increasingly important class of joining technologies called solid-state (SS) welding, as compared to more conventional fusion welding. Among many other advantages such as low heat input, SS processes are particularly suitable for dissimilar materials joining. In this paper, major SS joining technologies such as the linear and rotary friction welding (RFW), friction stir welding (FSW), ultrasonic welding, impact welding, are reviewed, as well as diffusion and roll bonding (RB). For each technology, the joining process is first depicted, followed by the process characterization, modeling and simulation, monitoring/diagnostics/ nondestructive evaluation (NDE), and ended with concluding remarks. A discussion section is provided after reviewing all the technologies on the common critical factors that affect the SS processes. Finally, the future outlook is presented.

References

1.
TWI
,
2018
, “
Friction Stir Welding of Airframe Structures
,” The Welding Institute, Cambridge, UK, accessed, July 29, 2018, http://www.twi-global.com/industries/aerospace/joining-of-airframe-structures/friction-stir-welding-of-airframe-structures/
2.
Ashby
,
M.
,
2010
,
Materials Selection in Mechanical Design
, 4th ed.,
Butterworth and Heinemann
,
Oxford, UK
.
3.
LeBozec
,
N.
,
LeGac
,
A.
, and
Thierry
,
N.
,
2012
, “
Corrosion Performance and Mechanical Properties of Joined Automotive Materials
,”
Mater. Corros.
,
63
(
5
), pp.
408
415
.
4.
Bevington
,
J. H.
,
1891
, “
Spinning Tubes
,” U.S. Patent No. 444721.
5.
Li
,
W.
,
Vairis
,
A.
,
Preuss
,
M.
, and
Ma
,
T.
,
2016
, “
Linear and Rotary Friction Welding Review
,”
Int. Mater. Rev.
,
61
(
2
), pp.
71
100
.
6.
Snyder
,
E. A.
,
1994
, “
Friction Welder Having a Drive Which Produces Orbital Motion
,” Hydroacoustics Inc., Rochester, NY, U. S. Patent No.
EP 0504494 A3
.https://patents.google.com/patent/EP0504494A3/un
7.
TWI
,
2018
, “
What is Friction Stud Welding?
,” The Welding Institute, Cambridge, UK, http://www.twi-global.com/technical-knowledge/faqs/faq-what-is-friction-stud-welding/
8.
Thomas
,
W.
,
Nicholas
,
E.
, and
Jones
,
S.
, “
Forming Metallic Composite Materials by Urging Base Materials Together Under Shear
,” Welding Institute England, Cambridge, UK, U.S. Patent No.
5262123A
.https://patents.google.com/patent/US5262123A/en
9.
Vicharapu
,
B.
,
Kanan
,
L. F.
,
Clarke
,
T.
, and
De
,
A.
,
2017
, “
An Investigation on Friction Hydro-Pillar Processing
,”
Sci. Technol. Weld. Joining
,
22
(
7
), pp.
555
561
.
10.
Maalekian
,
M.
,
2007
, “
Friction Welding—Critical Assessment of Literature
,”
Sci. Technol. Weld. Joining
,
12
(
8
), pp.
738
759
.
11.
Li
,
W.
, and
Wang
,
F.
,
2011
, “
Modeling of Continuous Drive Friction Welding of Mild Steel
,”
Mater. Sci. Eng. A
,
528
(
18
), pp.
5921
5926
.
12.
Kallee
,
S.
, and
Nicholas
,
D.
,
1999
, “
Friction and Forge Welding Processes for the Automotive Industry
,” SAE Technical Paper No. 0148-7191.
13.
Bhamji
,
I.
,
Preuss
,
M.
,
Threadgill
,
P. L.
, and
Addison
,
A. C.
,
2011
, “
Solid State Joining of Metals by Linear Friction Welding: A Literature Review
,”
Materials Science and Technology
,
27
(
1
), pp.
2
12
.
14.
Wanjara
,
P.
, and
Jahazi
,
M.
,
2005
, “
Linear Friction Welding of Ti-6Al-4V: Processing, Microstructure, and Mechanical-Property Interrelationships
,”
Metall. Mater. Trans. A
,
36
(
8
), pp.
2149
2164
.
15.
Johnson
,
S. A.
,
2013
, “
Linear Friction Welding Method
,” Apci, LLC, Saint Louis, MO, U.S. Patent No. WO2013085942A1. https://patents.google.com/patent/WO2013085942A1/en
16.
Wang
,
F. F.
,
Li
,
W. Y.
,
Li
,
J. L.
, and
Vairis
,
A.
,
2014
, “
Process Parameter Analysis of Inertia Friction Welding Nickel-Based Superalloy
,”
Int. J. Adv. Manuf. Technol.
,
71
(
9–12
), pp.
1909
1918
.
17.
Vairis
,
A.
, and
Frost
,
M.
,
1999
, “
On the Extrusion Stage of Linear Friction Welding of Ti-6Al-4V
,”
Mater. Sci. Eng. A
,
271
(
1–2
), pp.
477
484
.
18.
Vairis
,
A.
, and
Frost
,
M.
,
1998
, “
High-Frequency Linear Friction Welding of a Titanium Alloy
,”
Wear
,
217
(
1
), pp.
117
131
.
19.
Threadgill
,
P. L.
,
2007
, “
Terminology in Friction Stir Welding
,”
Sci. Technol. Weld. Joining
,
12
(4), pp.
357
360
.
20.
Karadge
,
M.
,
Preuss
,
M.
,
Lovell
,
C.
,
Withers
,
P. J.
, and
Bray
,
S.
,
2007
, “
Texture Development in Ti-6Al-4V Linear Friction Welds
,”
Mater. Sci. Eng. A
,
459
(
1–2
), pp.
182
191
.
21.
Romero
,
J.
,
Attallah
,
M. M.
,
Preuss
,
M.
,
Karadge
,
M.
, and
Bray
,
S.
,
2009
, “
Effect of the Forging Pressure on the Microstructure and Residual Stress Development in Ti-6Al-4V Linear Friction Welds
,”
Acta Mater.
,
57
(
18
), pp.
5582
5592
.
22.
Dalgaard
,
E.
,
Wanjara
,
P.
,
Trigo
,
G.
,
Jahazi
,
M.
,
Comeau
,
G.
, and
Jonas
,
J. J.
,
2011
, “
Linear Friction Welding of Al-Cu—Part 2: Interfacial Characteristics
,”
Can. Metall. Q
,
50
(
4
), pp.
360
370
.
23.
Li
,
W. Y.
,
Ma
,
T. J.
,
Zhang
,
Y.
,
Xu
,
Q. Z.
,
Li
,
J. L.
,
Yang
,
S. Q.
, and
Liao
,
H. L.
,
2008
, “
Microstructure Characterization and Mechanical Properties of Linear Friction Welding Ti-6Al-4V Alloy
,”
Adv. Eng. Mater.
,
10
(
1–2
), pp.
89
92
.
24.
Preuss
,
M.
,
Fonseca
,
J. Q.
,
Steuwer
,
A.
,
Wang
,
L.
,
Withers
,
P. J.
, and
Bray
,
S.
,
2004
, “
Residual Stresses in Linear Friction Welded IMI550
,”
J. Neutron Res
,
12
(
1–3
), pp.
165
173
.
25.
Damodaram
,
R.
,
Raman
,
S. G. S.
, and
Rao
,
K. P.
,
2013
, “
Microstructure and Mechanical Properties of Friction Welded Alloy 718
,”
Mater. Sci. Eng. A
,
560
, pp.
781
786
.
26.
Ma
,
T. J.
,
Li
,
W. Y.
,
Xu
,
Q. Z.
,
Zhang
,
Y.
,
Li
,
J. L.
,
Yang
,
S. Q.
, and
Liao
,
H. L.
,
2007
, “
Microstructure Evolution and Mechanical Properties of Linear Friction Welded 45 Steel Joint
,”
Adv. Eng. Mater.
,
9
(
8
), pp.
703
707
.
27.
Uday
,
M. B.
,
Ahmad Fauzi
,
M. N.
,
Zuhailawati
,
H.
, and
Ismail
,
A. B.
,
2010
, “
Advances in Friction Welding Process: A Review
,”
Sci. Technol. Weld. Joining
,
15
(7), pp.
534
558
.
28.
Arivazhagan
,
N.
,
Singh
,
S.
,
Prakash
,
S.
, and
Reddy
,
G. M.
,
2008
, “
An Assessment of Hardness, Impact Strength, and Hot Corrosion Behavior of Friction-Welded Dissimilar Weldments Between AISI 4140 and AISI 304
,”
Int. J. Adv. Manuf. Technol.
,
39
(
7–8
), pp.
679
689
.
29.
Hazra
,
M.
,
Rao
,
K. S.
, and
Reddy
,
G. M.
,
2014
, “
Friction Welding of a Nickel-Free High Nitrogen Steel: Influence of Forge Force on Microstructure, Mechanical Properties and Pitting Corrosion Resistance
,”
J. Mater. Res. Technol.
,
3
(
1
), pp.
90
100
.
30.
Astarita
,
A.
,
Curioni
,
M.
,
Squillace
,
A.
,
Zhou
,
X.
,
Bellucci
,
F.
,
Thompson
,
G. E.
, and
Beamish
,
K. A.
,
2015
, “
Corrosion Behavior of Stainless Steel-Titanium Alloy Linear Friction Welded Joints: Galvanic Coupling
,”
Mater. Corros.
,
66
(
2
), pp.
111
117
.
31.
Lee
,
W. B.
,
Bang
,
K. S.
, and
Jung
,
S.-B.
,
2005
, “
Effects of Intermetallic Compound on the Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints During Annealing
,”
J. Alloys Compd.
,
390
(
1–2
), pp.
212
219
.
32.
Healy
,
J. J.
,
McMullan
,
D. J.
, and
Bahrani
,
A. S.
,
1976
, “
Analysis of Frictional Phenomena in Friction Welding of Mild Steel
,”
Wear
,
37
(
2
), pp.
265
278
.
33.
Sluzalec
,
A.
,
1990
, “
Thermal Effects in Friction Welding
,”
Int. J. Mech. Sci.
,
32
(
6
), pp.
467
478
.
34.
Maalekian
,
M.
,
Kozeschnik
,
E.
,
Brantner
,
H. P.
, and
Cerjak
,
H.
,
2008
, “
Comparative Analysis of Heat Generation in Friction Welding of Steel Bars
,”
Acta Mater.
,
56
(
12
), pp.
2843
2855
.
35.
Pinheiro
,
G. A.
,
Olea
,
C. A.
,
dos Santos
,
J. F.
, and
Kainer
,
K. U.
,
2007
, “
Microstructural and Mechanical Behavior of Friction Welds in a High Creep Resistance Magnesium Alloy
,”
Adv. Eng. Mater.
,
9
(
9
), p.
757
.
36.
Ola
,
O. T.
,
Ojo
,
O. A.
,
Wanjara
,
P.
, and
Chaturvedi
, and
M. C.
,
2011
,
“Crack-Free 2474 Welding of in 738 by Linear Friction Welding,”
Adv. Mater. Res
.,
278
, pp.
446
453
.
37.
BS
,
2000
, “
Welding. Friction Welding of Metallic Materials, British Standards Institution
,” International Organization for Standardization (ISO), Switzerland, Standard No. BS EN 15620:2000
38.
Thomas
,
W. M.
,
Nicholas
,
E. D.
,
Needham
,
J. C.
,
Murch
,
M. G.
,
Temple-Smith
,
P.
, and
Dawes
,
C. J.
,
1995
, “
Friction Welding
,” Welding Institute England, Cambridge, UK, U.S. Patent No. 5,460,317A.
39.
Mishra
,
R. S.
,
De
,
P. S.
, and
Kumar
,
N.
,
2014
,
Friction Stir Welding and Processing: Science and Engineering
,
Springer
,
Switzerland
.
40.
Hovanski
,
Y.
,
Grant
,
G. J.
,
Jana
,
S.
, and
Mattlin
,
K. F.
,
2013
, “
Friction Stir Welding Tool and Process for Welding Dissimilar Materials
,”
Battelle Memorial Institute Inc., Columbus, OH
, U.S. Patent No. 8434661B2.
41.
Colligan
,
K.
,
1999
,
“Material Flow Behavior During Friction Stir Welding of Aluminum,”
Weld. J. Res. Suppl
.,
78
(
7
), pp.
229s
237s
42.
Guerra
,
M.
,
Schmidt
,
C.
,
McClure
,
J. C.
,
Murr
,
L. E.
, and
Nunes
,
A. C.
,
2002
, “
Flow Patterns During Friction Stir Welding
,”
Mater. Charact.
,
49
(
2
), pp.
95
101
.
43.
Mofid
,
M. A.
,
Abdollah-zadeh
,
A.
, and
Hakan Gür
,
C.
,
2014
, “
Investigating the Formation of Intermetallic Compounds During Friction Stir Welding of Magnesium Alloy to Aluminum Alloy in Air and Under Liquid Nitrogen
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5–8
)pp, pp.
1493
1499
.
44.
Jiang
,
W. H.
, and
Kovacevic
,
R.
,
2004
, “
Feasibility Study of Friction Stir Welding of 6061-T6 Aluminium Alloy With AISI 1018 Steel
,”
Proc. Inst. Mech. Eng. B
,
218
(
10
), pp.
1323
1331
.
45.
Chen
,
C. M.
, and
Kovacevic
,
R.
,
2004
, “
Joining of Al 6061 Alloy to AISI 1018 Steel by Combined Effects of Fusion and Solid-State Welding
,”
Int. J. Mach. Tools Manuf.
,
44
(
11
), pp.
1205
1214
.
46.
Firouzdor
,
V.
, and
Kou
,
S.
,
2010
, “
Al-to-Mg Friction Stir Welding: Effect of Material Position, Travel Speed, and Rotation Speed
,”
Metall. Mater. Trans. A
,
41
(
11
), pp.
2914
2935
.
47.
Galvão
,
I.
,
Leitão
,
C.
,
Loureiro
,
A.
, and
Rodrigues
,
D. M.
,
2012
, “
Study of the Welding Conditions During Similar and Dissimilar Aluminium and Copper Welding Based on Torque Sensitivity Analysis
,”
Mater. Des.
,
42
, pp.
259
264
.
48.
Kimapong
,
K.
, and
Watanabe
,
T.
,
2004
, “
Friction Stir Welding of Aluminum Alloy to Steel
,”
Weld. J.
,
83
, pp.
277S
282S
.
49.
Bang
,
K. S.
,
Lee
,
K. J.
,
Bang
,
H. S.
, and
Bang
,
H. S.
,
2011
, “
Interfacial Microstructure and Mechanical Properties of Dissimilar Friction Stir Welds Between 6061-T6 Aluminum and Ti-6%Al-4%V Alloys
,”
Mater. Trans.
,
52
(
5
), pp.
974
978
.
50.
Schneider
,
C.
,
Weinberger
,
T.
,
Inoue
,
J.
,
Koseki
,
T.
, and
Enzinger
,
N.
,
2011
, “
Characterisation of Interface of Steel/Magnesium FSW
,”
Sci. Technol. Weld. Joining
,
16
(
1
), pp.
100
107
.
51.
Liu
,
X.
,
Lan
,
S.
, and
Ni
,
J.
,
2014
, “
Analysis of Process Parameters Effects on Friction Stir Welding of Dissimilar Aluminum Alloy to Advanced High Strength Steel
,”
Mater. Des.
,
59
, pp.
50
62
.
52.
Ramachandran
,
K. K.
,
Murugan
,
N.
, and
Kumar
,
S.
,
2015
, “
Effect of Tool Axis Offset and Geometry of Tool Pin Profile on the Characteristics of Friction Stir Welded Dissimilar Joints of Aluminum Alloy AA5052 and HSLA Steel
,”
Mater. Sci. Eng. A
,
639
, pp.
219
233
.
53.
Coelho
,
R. S.
,
Kostka
,
A.
,
dos Santos
,
J. F.
, and
Kaysser-Pyzalla
,
A.
,
2012
, “
Friction-Stir Dissimilar Welding of Aluminium Alloy to High Strength Steels: Mechanical Properties and Their Relation to Microstructure
,”
Mater. Sci. Eng. A
,
556
, pp.
175
183
.
54.
Watanabe
,
T.
,
Takayama
,
H.
, and
Yanagisawa
,
A.
,
2006
, “
Joining of Aluminum Alloy to Steel by Friction Stir Welding
,”
J. Mater. Process. Technol.
,
178
(
1–3
), pp.
342
349
.
55.
Tanaka
,
T.
,
Morishige
,
T.
, and
Hirata
,
T.
,
2009
, “
Comprehensive Analysis of Joint Strength for Dissimilar Friction Stir Welds of Mild Steel to Aluminum Alloys
,”
Scr. Mater.
,
61
(
7
), pp.
756
759
.
56.
Lee
,
W. B.
,
Schmuecker
,
M.
,
Mercardo
,
U. A.
,
Biallas
,
G.
, and
Jung
,
S. B.
,
2006
, “
Interfacial Reaction in Steel–Aluminum Joints Made by Friction Stir Welding
,”
Scr. Mater.
,
55
(
4
), pp.
355
358
.
57.
Springer
,
H.
,
Kostka
,
A.
,
dos Santos
,
J. F.
, and
Raabe
,
D.
,
2011
, “
Influence of Intermetallic Phases and Kirkendall-Porosity on the Mechanical Properties of Joints Between Steel and Aluminium Alloys
,”
Mater. Sci. Eng. A
,
528
(
13–14
), pp.
4630
4642
.
58.
Uzun
,
H.
,
Donne
,
C. D.
,
Argagnotto
,
A.
,
Ghidini
,
T.
, and
Gambaro
,
C.
,
2005
, “
Friction Stir Welding of Dissimilar Al 6013-T4 to X5CrNi18-10 Stainless Steel
,”
Mater. Des.
,
26
(
1
), pp.
41
46
.
59.
Dehghani
,
M.
,
Amadesh
,
A.
, and
Akbari Mousavi
,
S. A. A.
,
2013
, “
Investigations on the Effects of Friction Stir Welding Parameters on Intermetallic and Defect Formation in Joining Aluminum Alloy to Mild Steel
,”
Mater. Des.
,
49
, pp.
433
441
.
60.
Coelho
,
R. S.
,
Kostka
,
A.
,
Sheikhi
,
S.
,
dos Santos
,
J. F.
, and
Pyzalla
,
A. R.
,
2008
, “
Microstructure and Mechanical Properties of an AA6181-T4 Aluminium Alloy to HC340 LA High Strength Steel Friction Stir Overlap Weld
,”
Adv. Eng. Mater.
,
10
(
10
), pp.
961
972
.
61.
Elrefaey
,
A.
,
Gouda
,
M.
,
Takahashi
,
M.
, and
Ikeuchi
,
K.
,
2005
, “
Characterization of Aluminum/Steel Lap Joint by Friction Stir Welding
,”
J. Mater. Eng. Perform.
,
14
(
1
), pp.
10
17
.
62.
Movahedi
,
M.
,
Kokabi
,
A. H.
,
Seyed Reihani
,
S. M.
, and
Najafi
,
H.
,
2011
, “
Mechanical and Microstructural Characterization of Al-5083/St-12 Lap Joints Made by Friction Stir Welding
,”
Procedia Eng.
,
10
, pp.
3297
3303
.
63.
Shen
,
Z.
,
Chen
,
Y.
,
Haghshenas
,
M.
, and
Gerlich
,
A. P.
,
2015
, “
Role of Welding Parameters on Interfacial Bonding in Dissimilar Steel/Aluminum Friction Stir Welds
,”
Eng. Sci. Technol. Int. J.
,
18
(
2
), pp.
270
277
.
64.
Chen
,
Z. W.
,
Yazdanian
,
S.
, and
Littlefair
,
G.
,
2013
, “
Effects of Tool Positioning on Joint Interface Microstructure and Fracture Strength of Friction Stir Lap Al-to-Steel Welds
,”
J. Mater. Sci.
,
48
(
6
), pp.
2624
2634
.
65.
Yang
,
Y.
,
Li
,
Y. L.
,
Zhang
,
H.
,
Guo
,
W.
, and
Zhou
,
Y.
,
2015
, “
Control of Interfacial Intermetallic Compounds in Fe–Al Joining by Zn Addition
,”
Mater. Sci. Eng. A
,
645
, pp.
323
327
.
66.
Zheng
,
Q.
,
Feng
,
X.
,
Shen
,
Y.
,
Huang
,
G.
, and
Zhao
,
P.
,
2016
, “
Dissimilar Friction Stir Welding of 6061 Al to 316 Stainless Steel Using Zn as a Filler Metal
,”
J. Alloy Comp.
,
686
, pp.
693
701
.
67.
Chen
,
Y. C.
,
Komazaki
,
T.
,
Tsumura
,
T.
, and
Nakata
,
K.
,
2008
, “
Role of Zinc Coat in Friction Stir Lap Welding Al and Zinc Coated Steel
,”
Mater. Sci. Technol.
,
24
(
1
), pp.
33
39
.
68.
Xue
,
P.
,
Ni
,
D. R.
,
Wang
,
D.
,
Xiao
,
B. L.
, and
Ma
,
Z. Y.
,
2011
, “
Effect of Friction Stir Welding Parameters on the Microstructure and Mechanical Properties of the Dissimilar Al–Cu Joints
,”
Mater. Sci. Eng. A
,
528
(
13–14
), pp.
4683
4689
.
69.
Galvão
,
I.
,
Oliveira
,
J. C.
,
Loureiro
,
A.
, and
Rodrigues
,
D. M.
,
2011
, “
Formation and Distribution of Brittle Structures in Friction Stir Welding of Aluminium and Copper: Influence of Process Parameters
,”
Sci. Technol. Weld. Joining
,
16
(
8
), pp.
681
689
.
70.
Xue
,
P.
,
Xiao
,
B. L.
,
Ni
,
D. R.
, and
Ma
,
Z. Y.
,
2010
, “
Enhanced Mechanical Properties of Friction Stir Welded Dissimilar Al–Cu Joint by Intermetallic Compounds
,”
Mater. Sci. Eng. A
,
527
(
21-22
), pp.
5723
5727
.
71.
Song
,
Z.
,
Nakata
,
K.
,
Wu
,
A.
,
Liao
,
J.
, and
Zhou
,
L.
,
2014
, “
Influence of Probe Offset Distance on Interfacial Microstructure and Mechanical Properties of Friction Stir Butt Welded Joint of Ti6Al4V and A6061 Dissimilar Alloys
,”
Mater. Des.
,
57
, pp.
269
278
.
72.
Galvão
,
I.
,
Loureiro
,
A.
, and
Rodrigues
,
D. M.
,
2016
, “
Critical Review on Friction Stir Welding of Aluminium to Copper
,”
Sci. Technol. Weld. Joining
,
21
(
7
), pp.
523
546
.
73.
Sato
,
Y. S.
,
Park
,
S. H. C.
,
Michiuchi
,
M.
, and
Kokawa
,
H.
,
2004
, “
Constitutional Liquation During Dissimilar Friction Stir Welding of Al and Mg Alloys
,”
Scr. Mater.
,
50
(
9
), pp.
1233
1236
.
74.
Firouzdor
,
V.
, and
Kou
,
S.
,
2010
, “
Formation of Liquid and Intermetallics in Al-to-Mg Friction Stir Welding
,”
Metall. Mater. Trans. A
,
41
(
12
), pp.
3238
3251
.
75.
Chen
,
Y. C.
, and
Nakata
,
K.
,
2008
, “
Friction Stir Lap Joining Aluminum and Magnesium Alloys
,”
Scr. Mater.
,
58
(
6
), pp.
433
436
.
76.
Rao
,
H. M.
,
Yuan
,
W.
, and
Badarinarayan
,
H.
,
2015
, “
Effect of Process Parameters on Mechanical Properties of Friction Stir Spot Welded Magnesium to Aluminum Alloys
,”
Mater. Des.
,
66
, pp.
235
245
.
77.
Yan
,
J.
,
Xu
,
Z.
,
Li
,
Z.
,
Li
,
L.
, and
Yang
,
S.
,
2005
, “
Microstructure Characteristics and Performance of Dissimilar Welds Between Magnesium Alloy and Aluminum Formed by Friction Stirring
,”
Scr. Mater.
,
53
(
5
), pp.
585
589
.
78.
Zettler
,
R.
,
da Silva
,
A. A. M.
,
Rodrigues
,
S.
,
Blanco
,
A.
, and
dos Santos
,
J. F.
,
2006
, “
Dissimilar Al to Mg Alloy Friction Stir Welds
,”
Adv. Eng. Mater.
,
8
(
5
), pp.
415
421
.
79.
Kostka
,
A.
,
Coelho
,
R. S.
,
dos Santos
,
J.
, and
Pyzalla
,
A. R.
,
2009
, “
Microstructure of Friction Stir Welding of Aluminium Alloy to Magnesium Alloy
,”
Scr. Mater.
,
60
(
11
), pp.
953
956
.
80.
Kumar
,
N.
,
Yuan
,
W.
, and
Mishra
,
R. S.
,
2015
,
Friction Stir Welding of Dissimilar Alloys and Materials
,
Elsevier
, Kidlington, Oxford.
81.
Komarasamy
,
M.
,
Mishra
,
R. S.
,
Mukherjee
,
S.
, and
Young
,
M.
,
2015
, “
Friction Stir Processed Thermally Stable Immiscible Nanostructured Alloys
,”
JOM
,
67
(
12
), pp.
2820
2827
.
82.
Liyanage
,
T.
,
Kilbourne
,
J.
,
Gerlich
,
A. P.
, and
North
,
T. H.
,
2009
, “
Joint Formation in Dissimilar Al Alloy/Steel and Mg Alloy/Steel Friction Stir Spot Welds
,”
Sci. Technol. Weld. Joining
,
14
(
6
), pp.
500
508
.
83.
Chen
,
T.
,
2009
, “
Process Parameters Study on FSW Joint of Dissimilar Metals for Aluminum–Steel
,”
J. Mater. Sci.
,
44
(
10
), pp.
2573
2580
.
84.
Movahedi
,
M.
,
Kokabi
,
A. H.
,
Seyed Reihani
,
S. M.
,
Cheng
,
W. J.
, and
Wang
,
C. J.
,
2013
, “
Effect of Annealing Treatment on Joint Strength of Aluminum/Steel Friction Stir Lap Weld
,”
Mater. Des.
,
44
, pp.
487
492
.
85.
Ogura
,
T.
,
Saito
,
Y.
,
Nishida
,
T.
,
Nishida
,
H.
,
Yoshida
,
T.
,
Omichi
,
N.
,
Fujimoto
,
M.
, and
Hirose
,
A.
,
2012
, “
Partitioning Evaluation of Mechanical Properties and the Interfacial Microstructure in a Friction Stir Welded Aluminum Alloy/Stainless Steel Lap Joint
,”
Scr. Mater.
,
66
(
8
), pp.
531
534
.
86.
Das
,
H.
,
Ghosh
,
R. N.
, and
Pal
,
T. K.
,
2014
, “
Study on the Formation and Characterization of the Intermetallics in Friction Stir Welding of Aluminum Alloy to Coated Steel Sheet Lap Joint
,”
Metall. Mater. Trans. A
,
45
(
11
), pp.
5098
5106
.
87.
Chen
,
Y. C.
, and
Nakata
,
K.
,
2008
, “
Effect of the Surface State of Steel on the Microstructure and Mechanical Properties of Dissimilar Metal Lap Joints of Aluminum and Steel by Friction Stir Welding
,”
Metall. Mater. Trans. A
,
39
(
8
), pp.
1985
1992
.
88.
Tan
,
C. W.
,
Jiang
,
Z. G.
,
Li
,
L. Q.
,
Chen
,
Y. B.
, and
Chen
,
X. Y.
,
2013
, “
Microstructural Evolution and Mechanical Properties of Dissimilar Al–Cu Joints Produced by Friction Stir Welding
,”
Mater. Des.
,
51
, pp.
466
473
.
89.
Aonuma
,
M.
, and
Nakata
,
K.
,
2011
, “
Dissimilar Metal Joining of 2024 and 7075 Aluminum Alloys to Titanium Alloys by Friction Stir Welding
,”
Mater. Trans.
,
52
(
5
), pp.
948
952
.
90.
Fu
,
B.
,
Qin
,
G.
,
Li
,
F.
,
Meng
,
X.
,
Zhang
,
J.
, and
Wu
,
C.
,
2015
, “
Friction Stir Welding Process of Dissimilar Metals of 6061-T6 Aluminum Alloy to AZ31B Magnesium Alloy
,”
J. Mater. Process. Technol.
,
218
, pp.
38
47
.
91.
Liang
,
Z.
,
Chen
,
K.
,
Wang
,
X.
,
Yao
,
J.
,
Yang
,
Q.
,
Zhang
,
L.
, and
Shan
,
A.
,
2013
, “
Effect of Tool Offset and Tool Rotational Speed on Enhancing Mechanical Property of Al/Mg Dissimilar FSW Joints
,”
Metall. Mater. Trans. A
,
44
(
8
), pp.
3721
3731
.
92.
Sato
,
Y. S.
,
Shiota
,
A.
,
Kokawa
,
H.
,
Okamoto
,
K.
,
Yang
,
Q.
, and
Kim
,
C.
,
2010
, “
Effect of Interfacial Microstructure on Lap Shear Strength of Friction Stir Spot Weld of Aluminium Alloy to Magnesium Alloy
,”
Sci. Technol. Weld. Joining
,
15
(
4
), pp.
319
324
.
93.
Yamamoto
,
N.
,
Liao
,
J.
,
Watanabe
,
S.
, and
Nakata
,
K.
,
2009
, “
Effect of Intermetallic Compound Layer on Tensile Strength of Dissimilar Friction-Stir Weld of a High Strength Mg Alloy and Al Alloy
,”
Mater. Trans.
,
50
(
12
), pp.
2833
2838
.
94.
Srinivasan
,
P. B.
,
Dietzel
,
W.
,
Zettler
,
R.
,
dos Santos
,
J. F.
, and
Sivan
,
V.
,
2005
, “
Stress Corrosion Cracking Susceptibility of Friction Stir Welded AA7075–AA6056 Dissimilar Joint
,”
Mater. Sci. Eng.: A
,
392
(
1–2
), pp.
292
300
.
95.
Srinivasan
,
P. B.
,
Dietzel
,
W.
,
Zettler
,
R.
,
dos Santos
,
J. F.
, and
Sivan
,
V.
,
2007
, “
Effects of Inhibitors on Corrosion Behaviour of Dissimilar Aluminium Alloy Friction Stir Weldment
,”
Corros. Eng. Sci. Technol.
,
42
(
2
), pp.
161
167
.
96.
Akinlabi
,
E. T.
,
Andrews
,
A.
, and
Akinlabi
,
S. A.
,
2014
, “
Effects of Processing Parameters on Corrosion Properties of Dissimilar Friction Stir Welds of Aluminium and Copper
,”
Trans. Nonferrous Met. Soc. China
,
24
(
5
), pp.
1323
1330
.
97.
Davoodi
,
A.
,
Esfahani
,
Z.
, and
Sarvghad
,
M.
,
2016
, “
Microstructure and Corrosion Characterization of the Interfacial Region in Dissimilar Friction Stir Welded AA5083 to AA7023
,”
Corros. Sci.
,
107
, pp.
133
144
.
98.
Sarvghad-Moghaddam
,
M.
,
Parvizi
,
R.
,
Davoodi
,
A.
,
Haddad-Sabzevar
,
M.
, and
Imani
,
C.
,
2014
, “
Establishing a Correlation Between Interfacial Microstructures and Corrosion Initiation Sites in Al/Cu Joints by SEM–EDS and AFM–SKPFM
,”
Corros. Sci.
,
79
, pp.
148
158
.
99.
Bertoncello
,
J. C. B.
,
Manhabosco
,
S. M.
, and
Dick
,
L. F. P.
,
2015
, “
Corrosion Study of the Friction Stir Lap Joint of AA7050-T76511 on AA2024-T3 Using the Scanning Vibrating Electrode Technique
,”
Corros. Sci.
,
94
, pp.
359
367
.
100.
Shen
,
C.
,
Zhang
,
J.
, and
Ge
,
J.
,
2011
, “
Microstructures and Electrochemical Behaviors of the Friction Stir Welding Dissimilar Weld
,”
J. Environ. Sci.
,
23
, pp.
32
35
.
101.
Jedrasiak
,
P.
,
Shercliff
,
H. R.
,
Reily
,
A.
,
McShane
,
G. J.
,
Chen
,
J. C.
,
Wang
,
L.
,
Robson
,
J.
, and
Prangnell
,
P.
,
2016
, “
Thermal Modeling of Al-Al and Al-Steel Friction Stir Spot Welding
,”
J. Mater. Eng. Perform.
,
25
(
9
), pp.
4089
4098
.
102.
Al-Roubaiy
,
A. O.
,
Nabat
,
S. M.
, and
Batako
,
A. D.
,
2014
, “
Experimental and Theoretical Analysis of Friction Stir Welding of Al–Cu Joints
,”
Int. J Adv. Manuf. Technol.
,
71
(
9–12
), pp.
1631
1642
.
103.
Buffa
,
G.
,
Baffari
,
D.
,
Di Carco
,
A.
, and
Fratini
,
L.
,
2015
, “
Friction Stir Welding of Dissimilar Aluminium–Magnesium Joints: Sheet Mutual Position Effects
,”
Sci. Technol. Weld. Joining
,
20
(
4
), pp.
271
279
.
104.
Buffa
,
G.
,
Lisi
,
M. D.
,
Barcellona
,
A.
, and
Fratini
,
L.
,
2016
, “
Material Flow Analysis in Dissimilar Friction Stir Welding of AA2024 and Ti6Al4V Butt Joints
,”
MATEC Web Conf.
,
80
, pp.
1
7
.
105.
Piccini
,
J. M.
, and
Svoboda
,
H. G.
,
2017
, “
Tool Geometry Optimization in Friction Stir Spot Welding of Al-Steel Joints
,”
J. Manuf. Process
,
26
, pp.
142
154
.
106.
Kishore
,
V. R.
,
Arun
,
J.
,
Padmanabhan
,
R.
, and
Balasubramanian
,
V.
,
2015
, “
Parametric Studies of Dissimilar Friction Stir Welding Using Computational Fluid Dynamics Simulation
,”
Int. J Adv. Manuf. Technol.
,
80
(
1–4
), pp.
91
98
.
107.
Nandan
,
R.
,
Prabu
,
B.
,
De
,
A.
, and
Debroy
,
T.
,
2007
, “
Improving Reliability of Heat Transfer and Materials Flow Calculations During Friction Stir Welding of Dissimilar Aluminum Alloys
,”
Weld. J.
,
86
, pp.
313
322
.
108.
Jamshidi Aval
,
H.
,
Serajzadeh
,
S.
, and
Kokabi
,
A. H.
,
2012
, “
Experimental and Theoretical Evaluations of Thermal Histories and Residual Stresses in Dissimilar Friction Stir Welding of AA5086-AA6061
,”
Int. J Adv. Manuf. Technol.
,
61
(
1–4
), pp.
149
160
.
109.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2014
, “
Thermo-Mechanical Finite Element Model of Friction Stir Welding of Dissimilar Alloys
,”
Int. J Adv. Manuf. Technol.
,
72
(
5–8
), pp.
607
617
.
110.
Matheny
,
M. P.
, and
Graff
,
K. F.
,
2015
,
Ultrasonic Welding of Metals in Power Ultrasonics
,
J. A.
Gallego-Juárez
, and
K. F.
Graff
,
Woodhead Publishing
, Cambridge, UK, pp.
259
293
.
111.
Martinsen
,
K.
,
Hu
,
S. J.
, and
Carlson
,
B. E.
,
2015
, “
Joining of Dissimilar Materials
,”
CIRP Ann. Manuf. Technol.
,
64
(
2
), pp.
679
699
.
112.
Cai, W., Kang, B., and Hu, S. J.,
2017
,
Ultrasonic Welding for Li-Ion Batteries
,
ASME Press
, New York.
113.
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2010
, “
Characterization of Interfacial Microstructures in 3003 Aluminum Alloy Blocks Fabricated by Ultrasonic Additive Manufacturing
,”
Acta Mater.
,
58
(
13
), pp.
4305
4315
.
114.
Schick
,
D. E.
,
Babu
,
S. S.
,
Foster
,
D.
,
Dapino
,
M. J.
,
Short
,
M.
, and
Lippold
,
J. C.
,
2011
, “
Transient Thermal Response in Ultrasonic Additive Manufacturing of Aluminum 3003
,”
Rapid Prototyping J.
,
17
(
5
), pp.
369
379
.
115.
Hetrick
,
E. T.
,
Baer
,
J. R.
,
Zhu
,
W.
,
Reatherford
,
L. V.
,
Grima
,
A. J.
,
Scholl
,
D. J.
,
Wilkosz
,
D. E.
,
Fatima
,
S.
, and
Ward
,
S. M.
,
2009
, “
Ultrasonic Metal Welding Process Robustness in Aluminum Automotive Body Construction Applications
,”
Weld. J.
,
88
(
2
), pp.
149-s
158-s
.
116.
Zhao
,
Y. Y.
,
Li
,
D.
, and
Zhang
,
Y. S.
,
2013
, “
Effect of Welding Energy on Interface Zone of Al-Cu Ultrasonic Welded Joint
,”
Sci. Technol. Weld. Joining
,
18
(
4
), pp.
354
360
.
117.
Zhao
,
J.
,
Li
,
H.
,
Choi
,
H.
,
Cai
,
W.
,
Abell
,
J. A.
, and
Li
,
X.
,
2013
, “
Insertable Thin Film Thermocouples for In Situ Transient Temperature Monitoring in Ultrasonic Metal Welding of Battery Tabs
,”
J. Manuf. Processes
,
15
(
1
), pp.
136
140
.
118.
Gibert
,
J. M.
,
2009
, “
Dynamics of Ultrasonic Consolidation
,” Ph.D. dissertation, Clemson University, Clemson, SC.
119.
Lu
,
Y.
,
Song
,
H.
,
Taber
,
G. A.
,
Foster
,
D. R.
,
Daehn
,
G. S.
, and
Zhang
,
W.
,
2017
, “
In-Situ Measurement of Relative Motion During Ultrasonic Spot Welding of Aluminum Alloy Using Photonic Doppler Velocimetry
,”
J. Mater. Process. Technol.
,
231
, pp.
431
440
.
120.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W.
, and
Abell
,
J. A.
,
2015
, “
Analysis of Weld Formation in Multilayer Ultrasonic Metal Welding Using High-Speed Images
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p. 031016.
121.
Yang
,
Y.
,
Janaki Ram
,
G. D.
, and
Stucker
,
B. E.
,
2009
, “
Bond Formation and Fiber Embedment During Ultrasonic Consolidation
,”
J. Mater. Process. Technol.
,
209
(
10
), pp.
4915
4924
.
122.
Bakavos
,
D.
, and
Prangnell
,
P. B.
,
2010
, “
Mechanisms of Joint and Microstructure Formation in High Power Ultrasonic Spot Welding 6111 Aluminium Automotive Sheet
,”
Mater. Sci. Eng. A
,
527
(
23
), pp.
6320
6334
.
123.
Xu
,
L.
,
Wang
,
L.
,
Chen
,
Y.
,
Robson
,
J. D.
, and
Prangnell
,
P. B.
,
2016
, “
Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds
,”
Metall. Mater. Trans. A
,
47
(
1
), pp.
334
346
.
124.
Ren
,
D.
,
Zhao
,
K. M.
,
Pan
,
M.
,
Chang
,
Y.
,
Gang
,
S.
, and
Zhao
,
D. W.
,
2017
, “
Ultrasonic Spot Welding of Magnesium Alloy to Titanium Alloy
,”
Scr. Mater.
,
126
, pp.
58
62
.
125.
Fujii
,
H. T.
,
Goto
,
Y.
,
Sato
,
Y. S.
, and
Kokawa
,
H.
,
2016
, “
Microstructure and Lap Shear Strength of the Weld Interface in Ultrasonic Welding of Al Alloy to Stainless Steel
,”
Scr. Mater.
,
116
, p.
135
.
126.
Wu
,
X.
,
Liu
,
T.
, and
Cai
,
W.
,
2015
, “
Microstructure, Welding Mechanism, and Failure of Al/Cu Ultrasonic Welds
,”
J. Manuf. Processes
,
20
(
1
), pp.
321
331
.
127.
Chen
,
Y.-C.
,
Bakavos
,
D.
,
Gholinia
,
A.
, and
Prangnell
,
P. B.
,
2012
, “
HAZ Development and Accelerated Post-Weld Natural Ageing in Ultrasonic Spot Welding Aluminum 6111-T4 Automotive Sheet
,”
Acta Mater.
,
60
(
6–7
), pp.
2816
2828
.
128.
Zhang
,
Z.
,
Wang
,
K.
,
Li
,
J.
,
Yu
,
Q.
, and
Cai
,
W.
,
2017
, “
Investigation of Interfacial Layer for Ultrasonic Spot Welded Copper to Aluminum Joints
,”
Sci. Rep.
,
7
(
1
), p.
12505
.
129.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W.
,
Abell
,
J. A.
, and
Li
,
J.
,
2013
, “
Characterization of Joint Quality in Ultrasonic Welding of Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p. 021004.
130.
Ni
,
Z. L.
, and
Ye
,
F. X.
,
2016
, “
Weldability and Mechanical Properties of Ultrasonic Joining of Aluminum to Copper Alloy With an Interlayer
,”
Mater. Lett.
,
182
, pp.
19
22
.
131.
Cai
,
W. W.
,
Abell
,
J. A.
,
Tang
,
J. C. H.
,
Wincek
,
M. A.
,
Boor
,
P. J.
,
Spacher
,
P. F.
, and
Hu
,
S. J.
,
2016
, “
Method and System for Online Quality Monitoring and Control of a Vibration Welding Process
,” U.S. Patent No. 8,702,882.
132.
Lee
,
S.
,
Shao
,
C.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Kannatey-Asibu
,
E.
,
Cai
,
W.
,
Spicer
,
J. P.
,
Abell
,
J. A.
, and
Abell
,
2014
, “
Characterization of Ultrasonic Metal Welding by Correlating Online Sensor Signals With Weld Attributes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051019
.
133.
Guo
,
W.
,
Shao
,
C.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Jin
,
J.
,
Spicer
,
J. P.
, and
Wang
,
H.
,
2016
, “
Online Process Monitoring With Near-Zero Misdetection for Ultrasonic Welding of Lithium-Ion Batteries: An Integration of Univariate and Multivariate Methods
,”
J. Manuf. Syst.
,
38
, pp.
141
150
.
134.
Shao
,
C.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Jin
,
J.
,
Abell
,
J. A.
, and
Spicer
,
J. P.
,
2016
, “
Tool Wear Monitoring for Ultrasonic Metal Welding of Lithium-Ion Batteries
,”
ASME J. Manuf. Sci. Eng.
,
138
, p.
051005
.
135.
Green Car Congress
,
2013
, “
Ultrasonic Welding in the Battery Pack for the Cadillac ELR
,” BioAge Group, LLC, Chandigarh, India, accessed July 29, 2018 http://www.greencarcongress.com/2013/08/elr-20130802.html
136.
Cai
,
W.
,
Kang
,
B.
, and
Tan
,
C. A.
,
2013
, “
Actively Controlled Vibration Welding System and Method
,” U.S. Patent No. 8,408,445.
137.
Lee
,
S. S.
,
Kim
,
K.
,
Cai
,
W.
, and
Abell
,
J. A.
,
2014
, “
Parasitic Vibration Attenuation in Ultrasonic Welding of Battery Tabs
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
181
195
.
138.
Cai
,
W.
,
Kang
,
B.
, and
Tan
,
C. A.
,
2013
, “
Passively Damped Vibration Welding System and Method
,” GM Global Technology Operations LLC, Detroit, MI, U.S. Patent No. 8,409,383.
139.
Siddiq
,
A.
, and
Ghassemieh
,
E.
,
2008
, “
Thermomechanical Analyses of Ultrasonic Welding Process Using Thermal and Acoustic Softening Effects
,”
Mech. Mater.
,
40
(
12
), pp.
982
1000
.
140.
Lee
,
D. K.
,
Kannatey-Asibu
,
E.
, Jr.
, and
Cai
,
W.
,
2013
, “
Ultrasonic Welding Simulations for Multiple Layers of Lithium-Ion Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061011
.
141.
Shen
,
N.
,
Samanta
,
A.
,
Ding
,
H.
, and
Cai
,
W.
,
2016
, “
Simulating Microstructure Evolution of Battery Tabs During Ultrasonic Welding
,”
J. Manuf. Processes
,
23
, pp.
306
314
.
142.
Lee
,
D. K.
, and
Cai
,
W.
,
2017
, “
The Effect of Horn Knurl Geometry on Battery Tab Ultrasonic Welding Quality: 2D Finite Element Simulations
,”
J. Manuf. Processes
,
28
(Part 3), pp.
428
441
.
143.
Chen
,
K.
, and
Zhang
,
Y.
,
2015
, “
Mechanical Analysis of Ultrasonic Welding Considering Knurl Pattern of Sonotrode Tip
,”
Mater. Des.
,
87
, pp.
393
404
.
144.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C.
,
2014
, “
Vibrational Energy Loss Analysis of Battery Bus-Bar in Ultrasonic Welding
,”
J. Manuf. Processes
,
16
(
2
), pp.
218
232
.
145.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C.
,
2013
, “
Dynamic Response of Battery Tabs Under Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051013
.
146.
Blazynski
,
T. Z.
,
1983
,
Explosive Welding, Forming and Compaction
,
Springer
, Berlin, Germany.
147.
Cowan
,
G. R.
,
Douglas
,
J. J.
, and
Holtzmann
,
A. R.
,
1964
, “
Explosive Bonding
,” E I du Pont de Nemours and Co, Wilmington, DE, U.S. Patent No. 3,137,937.
148.
Vivek
,
A.
,
Hansen
,
S. R.
,
Liu
,
B. C.
, and
Daehn
,
G. S.
,
2013
, “
Vaporizing Foil Actuator: A Tool for Collision Welding
,”
J. Mater. Process. Technol
,
213
(
12
), pp.
2304
2311
.
149.
Ngaile
,
G.
,
Lohr
,
P.
,
Lowrie
,
J.
, and
Modlin
,
R.
,
2014
, “
Development of Chemically Produced Hydrogen Energy-Based Impact Bonding Process for Dissimilar Metals
,”
J. Manuf. Process
,
16
(
4
), pp.
518
526
.
150.
Daehn
,
G. S.
, and
Lippold
,
J. C.
,
2011
, “
Low-Temperature Laser Spot Impact Welding Driven Without Contact
,” Ohio State University, Columbus, OH, U.S. Patent No.
8,084,710 B2
.https://patents.google.com/patent/US8084710
151.
Loureiro
,
A.
,
Mendes
,
R.
,
Ribeiro
,
J. B.
,
Leal
,
R. M.
, and
Galvão
,
I.
,
2016
, “
Effect of Explosive Mixture on Quality of Explosive Welds of Copper to Aluminium
,”
Mater. Des.
,
95
(
Suppl. C
), pp.
256
267
.
152.
Bergmann
,
O. R.
,
Cowan
,
G. R.
, and
Holtzman
,
A. H.
,
1966
, “
Experimental Evidence of Jet Formation During Explosion Cladding
,”
Aime. Met. Soc. Trans.
,
236
(
5
), pp.
646
653
.
153.
Faes
,
K.
,
Baaten
,
T.
,
De
Waele
,
W.
, and
Debroux
,
N.
,
2010
,
"Joining of Copper to Brass Using Magnetic Pulse Welding
," Proceedings of the 4th International conference on High Speed Forming, Columbus, OH, pp.
84
96
.
154.
Grigoriev
,
A. N.
, and
Pavlenko
,
A. V.
,
2009
, “
Pressure Generated by the Electric Explosion of Metal Foils
,”
Tech. Phys. Lett.
,
35
(
9
), pp.
865
868
.
155.
Vivek
,
A.
,
Liu
,
B.
,
Sakkinen
,
D.
,
Harris
,
M.
, and
Daehn
,
G.
,
2015
, “
Impact Welding of Aluminum Alloy 6061 to Dual Phase 780 Steel Using Vaporizing Foil Actuator
,”
SAE Paper No. 2015-01-0701.
156.
Vivek
,
A.
,
Wright
,
S. M.
,
Liu
,
B. C.
,
Hansen
,
S. R.
,
Brune
,
R. C.
,
Thurston
,
B. P.
,
Taber
,
G. A.
,
Lee
,
T.
,
Mao
,
Y.
, and
Dittrich
,
T. J.
,
2016
, “
Benchmarking and Refining the Vaporizing Foil Actuator Spot Welding Process
,”
HIGH SPEED Form
, p.
289
.
157.
Wang
,
H.
,
Vivek
,
A.
,
Wang
,
Y.
,
Taber
,
G.
, and
Daehn
,
G. S.
,
2016
, “
Laser Impact Welding Application in Joining Aluminum to Titanium
,”
J. Laser Appl.
,
28
(
3
), p.
032002
.
158.
Wang
,
X.
,
Gu
,
C.
,
Zheng
,
Y.
,
Shen
,
Z.
, and
Liu
,
H.
,
2014
, “
Laser Shock Welding of Aluminum/Aluminum and Aluminum/Copper Plates
,”
Mater. Des.
,
56
, pp.
26
30
.
159.
Findik
,
F.
,
2011
, “
Recent Developments in Explosive Welding
,”
Mater. Des.
,
32
(
3
), pp.
1081
1093
.
160.
Psyk
,
V.
,
Risch
,
D.
,
Kinsey
,
B. L.
,
Tekkaya
,
A. E.
, and
Kleiner
,
M.
,
2011
, “
Electromagnetic Forming—A Review
,”
J. Mater. Process. Technol.
,
211
(
5
), pp.
787
829
.
161.
Zittel
,
G.
,
2010
, “
A Historical Review of High Speed Metal Forming
,”
Fourth International Conference on High Speed Forming
, Columbus, OH, Mar. 9–10.
162.
Golovashchenko
,
S.
,
Bessonov
,
N.
, and
Davies
,
R.
,
2007
, “
Material Formability and Coil Design in Electromagnetic Forming
,”
J. Mater. Eng. Perform.
,
16
(
3
), pp.
314
320
.
163.
Hahn
,
M.
,
Weddeling
,
C.
,
Lueg-Althoff
,
J.
, and
Tekkaya
,
A. E.
,
2016
, “
Analytical Approach for Magnetic Pulse Welding of Sheet Connections
,”
J. Mater. Process. Technol.
,
230
(
Suppl. C
), pp.
131
142
.
164.
Aizawa
,
T.
,
Kashani
,
M.
, and
Okagawa
,
K.
,
2007
, “
Application of Magnetic Pulse Welding for Aluminum Alloys and SPCC Steel Sheet Joints
,”
Weld. J.
,
86
, pp.
119
124
.
165.
Barker
,
L. M.
, and
Hollenbach
,
R. E.
,
1972
, “
Laser Interferometer for Measuring High Velocities of Any Reflecting Surface
,”
J. Appl. Phys.
,
43
(
11
), pp.
4669
4675
.
166.
Strand
,
O. T.
,
Goosman
,
D. R.
,
Martinez
,
C.
,
Whitworth
,
T. L.
, and
Kuhlow
,
W. W.
,
2006
, “
Compact System for High-Speed Velocimetry Using Heterodyne Techniques
,”
Rev. Sci. Instrum.
,
77
(
8
), p.
083108
.
167.
Wronka
,
B.
,
2014
, “
Ultrasonic Flaw Detection for Quality Assessment of Explosively Clad Plates
,”
Adv. Mater. Sci. Eng.
,
2014
, p.
171279
.
168.
Guo
,
X. Z.
,
Tao
,
J.
,
Yuan
,
Z.
,
Zhang
,
L.
, and
Sun
,
X.
,
2012
, “
Interface and Properties of Explosive Welded TA1/Al Clad Tube
,”
Rare Met. Mat. Eng.
,
41
(
1
), pp.
139
142
.
169.
Zhang
,
Y.
,
Babu
,
S. S.
,
Prothe
,
C.
,
Blakely
,
M.
,
Kwasegroch
,
J.
,
LaHa
,
M.
, and
Daehn
,
G. S.
,
2011
, “
Application of High Velocity Impact Welding at Varied Different Length Scales
,”
J. Mater. Process. Technol.
,
211
(
5
), pp.
944
952
.
170.
Cowan
,
G. R.
,
Bergmann
,
O. R.
, and
Holtzman
,
A. H.
,
1971
, “
Mechanism of Bond Zone Wave Formation in Explosion-Clad Metals
,”
Metall. Mater. Trans. B
,
2
(
11
), pp.
3145
3155
.
171.
Czajkowski
,
H.
,
1973
, “
Explosive Welding of Aluminum-Steel Prefabricates
,”
Use of High-Energy Rate Methods for Forming, Welding, and Compaction
, p.
9
.
172.
Song
,
J.
,
Kostka
,
A.
,
Veehmayer
,
M.
, and
Raabe
,
D.
,
2011
, “
Hierarchical Microstructure of Explosive Joints: Example of Titanium to Steel Cladding
,”
Mater. Sci. Eng.: A
,
528
(
6
), pp.
2641
2647
.
173.
Gloc
,
M.
,
Wachowski
,
M.
,
Plocinski
,
T.
, and
Kurzydlowski
,
K. J.
,
2016
, “
Microstructural and Microanalysis Investigations of Bond Titanium Grade1/Low Alloy Steel st52-3N Obtained by Explosive Welding
,”
J. Alloys Compd.
,
671
, pp.
446
451
.
174.
Göbel
,
G.
,
Beyer
,
E.
,
Kaspar
,
J.
, and
Brenner
,
B.
,
2012
, “
Dissimilar Metal Joining: Macro-and Microscopic Effects of MPW
,”
Fifth International Conference on High Speed Forming
, Pittsburgh, PA, June 3–7, pp.
179
188
.
175.
Fan
,
Z.
,
Yu
,
H.
, and
Li
,
C.
,
2016
, “
Interface and Grain-Boundary Amorphization in the Al/Fe Bimetallic System During Pulsed-Magnetic-Driven Impact
,”
Scr. Mater.
,
110
, pp.
14
18
.
176.
Li
,
J.
,
Yu
,
Q.
,
Zhang
,
Z.
,
Xu
,
W.
, and
Sun
,
X.
,
2016
, “
Formation Mechanism for the Nanoscale Amorphous Interface in Pulse-Welded Al/Fe Bimetallic Systems
,”
Appl. Phys. Lett.
,
108
(
20
), p.
201606
177.
Rosenthal
,
I.
,
Miriyev
,
A.
,
Tuval
,
E.
,
Stern
,
A.
, and
Frage
,
N.
,
2014
, “
Characterization of Explosion-Bonded Ti-Alloy/Steel Plate With Ni Interlayer
,”
Metallogr. Microstruct. Anal
,
3
(
2
), pp.
97
103
.
178.
Hansen
,
S. R.
,
Vivek
,
A.
, and
Daehn
,
G. S.
,
2015
, “
Impact Welding of Aluminum Alloys 6061 and 5052 by Vaporizing Foil Actuators: Heat-Affected Zone Size and Peel Strength
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
51013
.
179.
Vargo
,
A.
, and
Prothe
,
C.
,
2008
, “
Comparative Tensile Strength and Shear Strength of Detaclad Explosion Clad Products
,”
International Application of Magnetic Pulse Welding for Aluminum Alloys and SPCC Steel Sheet Joints
, pp.
119
124
.
180.
Acarer
,
M.
, and
Demir
,
B.
,
2008
, “
An Investigation of Mechanical and Metallurgical Properties of Explosive Welded Aluminum–Dual Phase Steel
,”
Mater. Lett.
,
62
(
25
), pp.
4158
4160
.
181.
Benzing
,
J. T.
,
He
,
M.
,
Vivek
,
A.
,
Taber
,
G. A.
,
Mills
,
M. J.
, and
Daehn
,
G. S.
,
2017
, “
A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals
,”
J. Mater. Eng. Perform.
,
26
(
3
), pp.
1229
1235
.
182.
Hahn
,
M.
,
Weddeling
,
C.
,
Taber
,
G.
,
Vivek
,
A.
,
Daehn
,
G. S.
, and
Tekkaya
,
A. E.
,
2016
, “
Vaporizing Foil Actuator Welding as a Competing Technology to Magnetic Pulse Welding
,”
J. Mater. Process. Technol.
,
230
, pp.
8
20
.
183.
Karolczuk
,
A.
,
Kowalski
,
M.
,
Bański
,
R.
, and
Zok
,
F.
,
2013
, “
Fatigue Phenomena in Explosively Welded Steel-Titanium Clad Components Subjected to Push-Pull Loading
,”
Int. J. Fatigue
,
48
, pp.
101
108
.
184.
Mousavi
,
A. A. A.
,
Burley
,
S. J.
, and
Al-Hassani
,
S. T. S.
,
2005
, “
Simulation of Explosive Welding Using the Williamsburg Equation of State to Model Low Detonation Velocity Explosives
,”
Int. J. Impact Eng.
,
31
(
6
), pp.
719
734
.
185.
Feng
,
J.
,
Chen
,
P.
,
Zhou
,
Q.
,
Dai
,
K.
,
An
,
E.
, and
Yuan
,
Y.
,
2017
, “
Numerical Simulation of Explosive Welding Using Smoothed Particle Hydrodynamics Method
,”
Multiphysics
,
11
(
3
), pp.
315
326
.
186.
Osher
,
J. E.
,
Barnes
,
G.
,
Chau
,
H. H.
,
Lee
,
R. S.
,
Lee
,
C.
,
Speer
,
R.
, and
Weingart
,
R. C.
,
1989
, “
Operating Characteristics and Modeling of the LLNL 100-kV Electric Gun
,”
IEEE Trans. Plasma Sci.
,
17
(
3
), pp.
392
402
.
187.
Curtis
,
A. D.
,
Banishev
,
A. A.
,
Shaw
,
W. L.
, and
Dlott
,
D. D.
,
2014
, “
Laser-Driven Flyer Plates for Shock Compression Science: Launch and Target Impact Probed by Photon Doppler Velocimetry
,”
Rev. Sci. Instrum.
,
85
(
4
), p.
43908
.
188.
Akbari Mousavi
,
S. A. A.
, and
Al-Hassani
,
S. T. S.
,
2008
, “
Finite Element Simulation of Explosively-Driven Plate Impact With Application to Explosive Welding
,”
Mater. Des
,
29
(
1
), pp.
1
19
.
189.
Wilson
,
M. P. W.
, and
Brunton
,
J. H.
,
1970
, “
Wave Formation Between Impacting Liquids in Explosive Welding and Erosion
,”
Nature
,
226
(
5245
), pp.
538
541
.
190.
Nassiri
,
A.
,
Chini
,
G.
,
Vivek
,
A.
,
Daehn
,
G.
, and
Kinsey
,
B.
,
2015
, “
Arbitrary Lagrangian-Eulerian Finite Element Simulation and Experimental Investigation of Wavy Interfacial Morphology During High Velocity Impact Welding
,”
Mater. Des.
,
88
, pp.
345
358
.
191.
Nassiri
,
A.
, and
Kinsey
,
B.
,
2016
, “
Numerical Studies on High-Velocity Impact Welding: Smoothed Particle Hydrodynamics (SPH) and Arbitrary Lagrangian–Eulerian (ALE)
,”
J. Manuf. Process
,
24
, pp.
376
38
.
192.
Kiselev
,
S. P.
,
2012
, “
Numerical Simulation of Wave Formation in an Oblique Impact of Plates by the Method of Molecular Dynamics
,”
J. Appl. Mech. Tech. Phys.
,
53
(
6
), pp.
907
917
.
193.
Abe
,
A.
,
1999
, “
Numerical Simulation of the Plastic Flow Field Near the Bonding Surface of Explosive Welding
,”
J. Mater. Process. Technol.
,
85
(
1–3
), pp.
162
165
.
194.
Raoelison
,
R. N.
,
Sapanathan
,
T.
,
Padayodi
,
E.
,
Buiron
,
N.
, and
Rachik
,
M.
,
2016
,
"Interfacial Kinematics and Governing Mechanisms Under the Influence of High Strain Rate Impact Conditions: Numerical Computations of Experimental Observations,"
J. Mech. Phys. Solids
,
96
, pp.
147
161
.
195.
Nassiri
,
A.
,
Vivek
,
A.
,
Abke
,
T.
,
Liu
,
B.
,
Lee
,
T.
, and
Daehn
,
G.
,
2017
, “
Depiction of Interfacial Morphology in Impact Welded Ti/Cu Bimetallic Systems Using Smoothed Particle Hydrodynamics
,”
Appl. Phys. Lett.
,
110
(
23
), p.
231601
.
196.
Gulenc
,
B.
,
2008
, “
Investigation of Interface Properties and Weldability of Aluminum and Copper Plates by Explosive Welding Method
,”
Mater. Des.
,
29
(
1
), pp.
275
278
.
197.
Crossland
,
B.
, and
Williams
,
J. D.
,
1970
, “
Explosive Welding
,”
Int. Mater. Rev.
,
15
(
1
), pp.
79
100
.
198.
Lysak
,
V. I.
, and
Kuzmin
,
S. V.
,
2012
, “
Lower Boundary in Metal Explosive Welding. Evolution of Ideas
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
150
156
.
199.
Akbari Mousavi
,
S. A. A.
, and
Farhadi Sartangi
,
P.
,
2009
, “
Experimental Investigation of Explosive Welding of Cp-Titanium/AISI 304 Stainless Steel
,”
Mater. Des.
,
30
(
3
), pp.
459
468
.
200.
Durgutlu
,
A.
,
Okuyucu
,
H.
, and
Gulenc
,
B.
,
2008
, “
Investigation of Effect of the Stand-Off Distance on Interface Characteristics of Explosively Welded Copper and Stainless Steel
,”
Mater. Des.
,
29
(
7
), pp.
1480
1484
.
201.
Kahraman
,
N.
,
Gülenç
,
B.
, and
Findik
,
F.
,
2005
, “
Joining of Titanium/Stainless Steel by Explosive Welding and Effect on Interface
,”
J. Mater. Process. Technol.
,
169
(
2
), pp.
127
133
.
202.
Manikandan
,
P.
,
Hokamoto
,
K.
,
Fujita
,
M.
,
Raghukandan
,
K.
, and
Tomoshige
,
R.
,
2008
, “
Control of Energetic Conditions by Employing Interlayer of Different Thickness for Explosive Welding of Titanium/304 Stainless Steel
,”
J. Mater. Process. Technol.
,
195
(
1–3
), pp.
232
240
.
203.
Jaramillo
,
D.
,
Szecket
,
A.
, and
Inal
,
O. T.
,
1987
, “
On the Transition From a Waveless to a Wavy Interface in Explosive Welding
,”
Mater. Sci. Eng.
,
91
, pp.
217
222
.
204.
El-Sobky
,
H.
,
1983
, “
Mechanics of Explosive Welding
,” Explosive Welding, Forming and Compaction, Springer, Dordrecht, The Netherlands., pp.
189
217
.
205.
Kazakov
,
N. F.
,
1985
,
Diffusion Bonding of Materials
,
Pergamon Press
,
New York
.
206.
Jahn
,
S.
,
Sändig
,
S.
,
Dahms
,
S.
, and
Gemse
,
F.
,
2014
, “
Diffusion Bonding Systems
,”
Materialwiss. Werkstofftech.
,
45
(
9
), pp.
807
814
.
207.
Liu
,
P.
,
Li
,
Y. J.
,
Geng
,
H. R.
, and
Wang
,
J.
,
2006
, “
Investigation of Interfacial Structure of Mg/Al Vacuum Diffusion-Bonded Joint
,”
Vaccum
,
80
(
5
), pp.
395
399
.
208.
Dunkerton
,
S.
,
Hall
,
A.
, and
Cbi
,
C.
,
1991
, “
Diffusion Bonding–an Overview
,”
Diffusion Bonding
, Vol.
2
,
Elsevier Applied Science
,
London
, pp.
1
11
.
209.
Horigan
,
W. L.
, Jr.
, and
Feduska
,
W.
,
1965
, “
Process for Diffusion-Bonding
,” U.S. Patent No.
3197858 A
.https://patents.google.com/patent/US3197858A/en.
210.
Akca
,
E.
, and
Gürsel
,
A.
,
2015
, “
The Importance of Interlayers in Diffusion Welding - a Review
,”
Period. Eng. Nat. Sci. (PEN)
,
3
(
2
), pp.
12
16
.
211.
Pfaffenberger
,
R. T.
, and
Horick
,
L. V. R.
,
1969
, “
Roll Welded Structure and Process
,” U.S. Patent No.
3453717
.https://patents.google.com/patent/US3453717
212.
Yang
,
W.
,
2011
, “
An Investigation of Bonding Mechanism in Metal Cladding by Warm Rolling
,” Ph.D. dissertation, Texas A&M University, College Station, TX.
213.
Duvall
,
D. S.
,
Owczarski
,
W. A.
, and
Paulonis
,
D. F.
,
1972
, “
Diffusion Bonding Utilizing Transient Liquid Phase
,” U.S. Patent No.
3678570A
.https://patents.google.com/patent/US3678570A/en.
214.
Pouranvari
,
M.
,
Ekrami
,
A.
, and
Kokabi
,
A.
,
2009
, “
Effect of Bonding Temperature on Microstructure Development During TLP Bonding of a Nickel Base Superalloy
,”
J. Alloy. Compd.
,
469
(
1–2
), pp.
270
275
.
215.
Kwon
,
Y.-S.
,
Kim
,
J.-S.
,
Moon
,
J.-S.
, and
Suk
,
M.-J.
,
2000
, “
Transient Liquid Phase Bonding Process Using Liquid Phase Sintered Alloy as an Interlayer Material
,”
J. Mater. Sci.
,
35
(
8
), pp.
1917
1924
.
216.
Bailey
,
F.
, and
Borbidge
,
W.
,
1981
, “Solid State Metal-Ceramic Reaction Bonding,”
Surfaces and Interfaces in Ceramic and Ceramic—Metal Systems
,
Springer
,
Switzerland
, pp.
525
533
.
217.
NASA’s Jet Propulsion Laboratory, Pasadena, California, 2018, “Mo/Ti Diffusion Bonding for Making Thermoelectric Devices,” http://www.techbriefs.com/component/content/article/2014.
218.
Wu
,
X.
,
Chandel
,
R.
, and
Li
,
H.
,
2001
, “
Evaluation of Transient Liquid Phase Bonding Between Nickel-Based Superalloys
,”
J. Mater. Sci.
,
36
(
6
), pp.
1539
1546
.
219.
Begg
,
A. R.
,
1984
, “
Diffusion Bonding of Aluminium Surfaces Coated With Gallium
,” Europe Patent No.
EP0123382 A1
.https://patents.google.com/patent/EP0123382A1/en.
220.
Kadhim
,
Z. D.
,
Al- Azzawi
,
A. I.
, and
Al-Janabi
,
S. J.
,
2009
, “
Effect of the Diffusion Bonding Conditions on Joints Strength
,”
J. Eng. Dev.
,
13
(
1
), pp.
179
187
.
221.
Cook
,
G. O.
, and
Sorensen
,
C. D.
,
2011
, “
Overview of Transient Liquid Phase and Partial Transient Liquid Phase Bonding
,”
J. Mater. Sci.
,
46
(
16
), pp.
5305
5323
.
222.
Gale
,
W.
, and
Butts
,
D.
,
2004
, “
Transient Liquid Phase Bonding
,”
Sci. Technol. Weld. Joining
,
9
(
4
), pp.
283
300
.
223.
Mahendran
,
G.
,
Babu
,
S.
, and
Balasubramanian
,
V.
,
2009
, “
Analyzing the Effect of Diffusion Bonding Process Parameters on Bond Characteristics of Mg-Al Dissimilar Joints
,”
J. Mater. Eng. Perform.
,
19
(
5
), pp.
657
665
.
224.
Ravisankar
,
B.
,
Krishnamoorthi
,
J.
,
Ramakrishnan
,
S. S.
, and
Angelo
,
P. C.
,
2009
, “
Diffusion Bonding of SU 263
,”
J. Mater. Process. Technol.
,
209
(
4
), pp.
2135
2144
.
225.
Elmer, J.
,
W.
,
Klingmann, J.
, and
Bibber
,
K. V.
,
2001
, "Diffusion bonding and brazing of high purity copper for linear collider accelerator structures,"
Phys. Rev. ST Accel. Beams
,
4
, p.
053502
.
226.
Thomas
,
G.
,
Volker
,
T.
, and
Andreas
,
H.
,
2016
, “Diffusion Bonding: Influence of Process Parameters and Material Microstructure,”
Joining Technologies
,
Intech Open Publishers
,
London, UK
.
227.
Mahendrana
,
G.
,
Balasubramanian
,
V.
, and
Senthilvelan
,
T.
,
2009
, “
Developing Diffusion Bonding Windows for Joining AZ31B Magnesium–AA2024 Aluminum Alloys
,”
Mater. Des.
,
30
(
4
), pp.
1240
1244
.
228.
Samavatian
,
M.
,
Zakipour
,
S.
, and
Paidar
,
M.
,
2016
, “
Effect of Bonding Pressure on Microstructure and Mechanical Properties of Ti-6Al-4V Diffusion-Bonded Joint
,”
Weld. World
,
61
(
1
), pp.
69
74
.
229.
Mahendiran
,
G.
,
Balasubramanian
,
V.
, and
Sethilvelan
,
T.
,
2011
, “
Mechanical and Metallurgical Properties of Diffusion Bonded AA2024 Aluminum Alloy and Commercial Grade Copper
,”
Elixir Mech. Eng.
,
38
, pp.
4283
4289
.https://www.elixirpublishers.com/articles/1350560379_38%20(2011)%204283-4289.pdf.
230.
Fernandusa
,
M. J.
,
Senthilkumar
,
T.
, and
Balasubramanian
,
V.
,
2011
, “
Developing Temperature–Time and Pressure–Time Diagrams for Diffusion Bonding AZ80 Magnesium and AA6061 Aluminum Alloys
,”
Mater. Des.
,
32
(
3
), pp.
1651
1656
.
231.
Gietzelt
,
T.
,
Toth
,
V.
,
Hüll
,
A.
, and
Dittmeyer
,
R.
,
2017
, “
Dependency of Deformation During Diffusion Welding on Aspect Ratio Using Samples Made of SS 304 (1.4301)
,”
Adv. Eng. Mater.
,
19
(
2
), p.
1600344
.
232.
Wang
,
Y.
,
Luo
,
G.
,
Zhang
,
J.
,
Shen
,
Q.
, and
Zhang
,
L.
,
2013
, “
Microstructure and Mechanical Properties of Diffusion-Bonded Mg-Al Joints Using Silver Film as Interlayer
,”
Mater. Sci. Eng. A
,
559
, pp.
868
874
.
233.
Tang
,
B.
,
Qi
,
X. S.
,
Kou
,
H. C.
,
Li
,
J. S.
, and
Milenkovic
,
S.
,
2016
, “
Recrystallization Behavior at Diffusion Bonding Interface of High Nb Containing TiAl Alloy
,”
Adv. Eng. Mater.
,
18
(
4
), pp.
657
664
.
234.
Simoes
,
S.
,
Viana
,
F.
,
Ventzke
,
V.
,
Kocak
,
M.
,
Ramos
,
A. S.
,
Vieira
,
M. T.
, and
Vieira
,
M. F.
,
2010
, “
Diffusion Bonding of TiAl Using Ni/Al Multilayers
,”
J. Mater. Sci.
,
45
(
16
), pp.
4351
4357
.
235.
Li
,
S. X.
,
Xuan
,
F. Z.
,
Tu
,
S. T.
, and
Yu
,
S. R.
,
2008
, “
Microstructure Evolution and Interfacial Failure Mechanism in 316 LSS Diffusion-Bonded Joints
,”
Mater. Sci. Eng. A
,
1-2
, pp.
488
491
.
236.
Somekawa
,
H.
,
Hosokawa
,
H.
,
Watanabe
,
H.
, and
Higashi
,
K.
,
2003
, “
Diffusion Bonding in Super Plastic Mg Alloys
,”
Mater. Sci. Eng. A
,
339
(
1–2
), pp.
328
333
.
237.
Kundu
,
S.
,
Ghosh
,
M.
,
Laik
,
A.
,
Bhamumurthy
,
K.
,
Kale
,
G. B.
, and
Chatterjee
,
S.
,
2005
, “
Diffusion Bonding of Commercially Pure Titanium to 304 SS Using Copper Interlayer
,”
Mater. Sci. Eng. A
,
407
(
1–2
), pp.
154
160
.
238.
Kundu
,
S.
, and
Chatterjee
,
S.
,
2007
, “
Mechanical Properties of Diffusion Bonded Joints Between Titanium and Stainless Steel With Nickel Interlayer
,”
Mater. Sci. Technol.
,
23
(
10
), pp.
1167
1172
.
239.
Liu
,
J.
,
Cao
,
J.
,
Lin
,
X.
,
Song
,
X.
, and
Feng
,
J.
,
2013
, “
Microstructure and Mechanical Properties of Diffusion Bonded Single Crystal to Polycrystalline Ni-Based Super Alloys Joint
,”
Mater. Des.
,
49
, pp.
622
626
.
240.
Akca
,
E.
, and
Gursel
,
A.
,
2017
, “
The Effect of Diffusion Welding Parameters on the Mechanical Properties of Titanium Alloy and Aluminum Couples
,”
Metals
,
7
(
1
), p.
22
.
241.
Lodge
,
K. W.
, and
Briggs
,
G. A. D.
,
1983
, “
The Potential Drop Across an Imperfect Diffusion Bond
,”
J. Mater. Sci.
,
18
(
8
), pp.
2354
2360
.
242.
Xuan
,
F. Z.
,
Zhang
,
B.
, and
Tu
,
S. T.
,
2007
, “
Interfacial Resistance Method for Quality Evaluation of Diffusion Bonded Joints
,”
Key Eng. Mater.
,
353–358
, pp.
1944
1947
.
243.
Li
,
Y.
,
Xuan
,
F.
,
Li
,
S.
, and
Tu
,
S.
,
2011
, “
Quality Evaluation of Diffusion Bonded Joints by Electrical Resistance Measuring and Microscopic Fatigue Testing
,”
Chin. J. Mech. Eng.
,
24
(
2
), pp.
187
193
.
244.
Yilmaz
,
O.
, and
Celik
,
H.
,
2003
, “
Electrical and Thermal Properties of the Interface at Diffusion-Bonded and Soldered 304 Stainless Steel and Copper Bimetal
,”
J. Mater. Process. Technol.
,
141
(
1
), pp.
67
76
.
245.
Li
,
S.-X.
,
Li
,
L.
,
Yu
,
S.-R.
,
Akid
,
R.
, and
Xia
,
H.-B.
,
2011
, “
Investigation of Intergranular Corrosion of 316 L Stainless Steel Diffusion Bonded Joint by Electrochemical Potentiokinetic Reactivation
,”
Corros. Sci.
,
53
(
1
), pp.
99
104
.
246.
Zaid
,
B.
,
Taouinet
,
M.
,
Souami
,
N.
, and
Lebaili
,
S.
,
2013
, “
Microstructure and Corrosion Aspects of Dissimilar Joints of Zircaloy-4 and 304 L Stainless Steel
,”
J. Mater. Eng. Perform.
,
22
(
3
), pp.
854
862
.
247.
Rocha
,
L. A.
,
Ariza
,
E.
,
Costa
,
A. M.
,
Oliveira
,
F. J.
, and
Silva
,
R. F.
,
2003
, “
Electrochemical Behavior of Ti/Al2O3 Interfaces Produced by Diffusion Bonding
,”
Mater. Res.
,
6
(
4
), pp.
439
444
.
248.
Chen
,
S. D.
,
Soh
,
A. K.
, and
Ke
,
F. J.
,
2005
, “
Molecular Dynamics Modeling of Diffusion Bonding
,”
Scr. Mater.
,
52
(
11
), pp.
1135
1140
.
249.
King
,
W. H.
, and
Owczarski
,
W. A.
,
1967
, “
Diffusion Welding of Commercially Pure Titanium
,”
Weld. J. Res. Suppl.
,
46
, p.
289
.
250.
Hill
,
A.
, and
Wallach
,
E.
,
1989
, “
Modeling Solid-State Diffusion Bonding
,”
Acta Metall.
,
37
(
9
), pp.
2425
2437
.
251.
Derby
,
B.
, and
Wallach
,
E. R.
,
1984
, “
Diffusion Bonding: Development of Theoretical Model
,”
Met. Sci.
,
18
(
9
), pp.
427
431
.
252.
Pilling
,
J.
,
1988
, “
The Kinetics of Isostatic Diffusion Bonding in Superplastic Materials
,”
Mater. Sci. Eng.
,
100
, pp.
137
144
.
253.
Pilling
,
J.
, and
Ridley
,
N.
,
1987
, “
Solid State Bonding of Superplastic AA 7475
,”
Mater. Sci. Technol.
,
3
(
5
), pp.
353
359
.
254.
Livesey
,
D.
, and
Ridley
,
N.
,
1991
, “Diffusion Bonding of Superplastic Aluminium Alloys Using a Transient Liquid Phase Interlayer (Zinc),”
Diffusion Bonding
, Vol.
2
,
Springer
,
Switzerland
, pp.
83
100
.
255.
Takahashi
,
Y.
,
Ueno
,
F.
, and
Nishiguchi
,
K.
,
1988
, “
A Numerical Analysis of the Void-Shrinkage Process Controlled by Surface-Diffusion
,”
Acta Metall.
,
36
(
11
), pp.
3007
3018
.
256.
Shirzadi
,
A. A.
, and
Wallach
,
E. R.
,
1999
, “
Analytical Modeling of Transient Liquid Phase (TLP) Diffusion Bonding When a Temperature Gradient Is Imposed
,”
Acta Metall.
,
47
(
13
), pp.
3551
3560
.
257.
Zhou
,
Y.
,
Gale
,
W. F.
, and
North
,
T. H.
,
1995
, “
Modeling of Transient Liquid Phase Bonding
,”
Int. Mater. Rev.
,
40
(
5
), pp.
181
196
.
258.
Nakagawa
,
H.
,
Lee
,
C. H.
, and
North
,
T. H.
,
1991
, “
Modeling of Base Metal Dissolution Behavior During Transient Liquid-Phase Brazing
,”
Metall. Trans. A
,
22A
(
2
), pp.
543
555
.
259.
Barnes
,
A. J.
,
2007
, “
Superplastic Forming 40 Years and Still Growing
,”
J. Mater. Eng. Perform.
,
16
(
4
), pp.
440
454
.
260.
Wood
,
P.
,
Qarni
,
M. J.
,
Blackwell
,
P.
,
Cerny
,
V.
,
Brennand
,
P.
,
Wilkinson
,
S.
, and
Rosochowski
,
2013
, “
Modeling the Super Plastic Forming of a Multi- Sheet Diffusion Bonded Titanium Alloy Demonstrator Fan Blade
,”
Mater. Sci. Forum
,
838-839
, pp.
215
223
.
261.
Padron
,
T.
,
Khan
,
T. I.
, and
Kabir
,
M. J.
,
2004
, “
Modeling the Transient Liquid Phase Bonding Behavior of a Duplex Stainless Steel Using Copper Interlayers
,”
Mater. Sci.Eng. A
,
385
(
1–2
), pp.
220
228
.
262.
MacDonald
,
W. D.
, and
Eagar
,
T. W.
,
1992
, “
Transient Liquid Phase Bonding
,”
Annu. Rev. Mater. Sci.
,
22
(
1
), pp.
23
46
.
263.
Liu
,
S.
,
Xu
,
K.
,
Liu
,
G.
,
Cao
,
C.
, and
Heng
,
Z.
,
2013
, “
The Evolution Characteristics and Numerical Analysis of Diffusion Bonding Interface Structure of Titanium Alloy/Cu/Stainless Steel
,”
Adv. Mater. Sci.
,
33
, pp.
224
231
.http://www.ipme.ru/e-journals/RAMS/no_33313/04_333_liu.pdf.
264.
Wikstrom
,
N. P.
,
2006
, “
The Effect of Process Parameters on Microstructure of Transient Liquid Phase Bonded Superalloys Inconel 738 and Waspaloy
,” Ph.D. dissertation, University of Manitoba, Winnipeg, MB, Canada.
265.
Kuntz
,
M. L.
,
2006
, “
Quantifying Isothermal Solidification Kinetics During Transient Liquid Phase Bonding Using Differential Scanning Calorimetry
,”
Ph. D dissertation
, University of Waterloo, ON, Canada.http://hdl.handle.net/10012/890
You do not currently have access to this content.