Abstract

The printing resolution and scale of projection-based 3D printing are affected by the pixel size and projected light power. An effective and versatile method to print complex constructs with high resolution and large area is still required since light distribution in printing systems is generally non-uniform. Here, we propose a projection-based continuous 3D printing with the grayscale display method to serve as an effective and precise way to improve printing resolution and area. The light characterization results demonstrated that the power density presented a non-uniform distribution, and the power values are linear to the excitation power. After modifying the masks into grayscale according to the duty cycle of the digital micro-mirror device (DMD) display, projected light exhibited improved uniformity along with expected light power and uniform ratio. To validate this developed printing process, the grayscale continuous printing of mesh and hexahedron frame constructs enabled a remarkable increase in the printing area and alleviation of under/over curing. This work reveals significant progress in printing of constructs at larger area and higher resolution in projection-based continuous 3D printing under non-uniform light.

References

1.
Koffler
,
J.
,
Zhu
,
W.
,
Qu
,
X.
,
Platoshyn
,
O.
,
Dulin
,
J. N.
,
Brock
,
J.
,
Graham
,
L.
,
Lu
,
P.
,
Sakamoto
,
J.
,
Marsala
,
M.
,
Chen
,
S.
, and
Tuszynski
,
M. H.
,
2019
, “
Biomimetic 3D-Printed Scaffolds for Spinal Cord Injury Repair
,”
Nat. Med.
,
25
(
2
), pp.
263
269
. 10.1038/s41591-018-0296-z
2.
Grigoryan
,
B.
,
Paulsen
,
S. J.
,
Corbett
,
D. C.
,
Sazer
,
D. W.
,
Fortin
,
C. L.
,
Zaita
,
A. J.
,
Greenfield
,
P. T.
,
Calafat
,
N. J.
,
Gounley
,
J. P.
,
Ta
,
A. H.
,
Johansson
,
F.
,
Randles
,
A.
,
Rosenkrantz
,
J. E.
,
Louis-Rosenberg
,
J. D.
,
Galie
,
P. A.
,
Stevens
,
K. R.
, and
Miller
,
J. S.
,
2019
, “
Multivascular Networks and Functional Intravascular Topologies Within Biocompatible Hydrogels
,”
Science
,
364
(
6439
), pp.
458
464
. 10.1126/science.aav9750
3.
Yang
,
Y.
,
Chen
,
Z.
,
Song
,
X.
,
Zhang
,
Z.
,
Zhang
,
J.
,
Shung
,
K. K.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2017
, “
Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing
,”
Adv. Mater.
,
29
(
11
), p.
1605750
. 10.1002/adma.201605750
4.
Mu
,
Q.
,
Wang
,
L.
,
Dunn
,
C. K.
,
Kuang
,
X.
,
Duan
,
F.
,
Zhang
,
Z.
,
Qi
,
H. J.
, and
Wang
,
T.
,
2017
, “
Digital Light Processing 3D Printing of Conductive Complex Structures
,”
Addit. Manuf.
,
18
, pp.
74
83
. 10.1016/j.addma.2017.08.011
5.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
,
Ermoshkin
,
A.
,
Samulski
,
E. T.
, and
DeSimone
,
J. M.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
. 10.1126/science.aaa2397
6.
Zhu
,
W.
,
Tringale
,
K. R.
,
Woller
,
S. A.
,
You
,
S.
,
Johnson
,
S.
,
Shen
,
H.
,
Schimelman
,
J.
,
Whitney
,
M.
,
Steinauer
,
J.
,
Xu
,
W.
,
Yaksh
,
T. L.
,
Nguyen
,
Q. T.
, and
Chen
,
S.
,
2018
, “
Rapid Continuous 3D Printing of Customizable Peripheral Nerve Guidance Conduits
,”
Mater. Today
,
21
(
9
), pp.
951
959
. 10.1016/j.mattod.2018.04.001
7.
Hwang
,
H. H.
,
Zhu
,
W.
,
Victorine
,
G.
,
Lawrence
,
N.
, and
Chen
,
S.
,
2018
, “
3D-Printing of Functional Biomedical Microdevices via Light- and Extrusion-Based Approaches
,”
Small Methods
,
2
(
2
), p.
1700277
. 10.1002/smtd.201700277
8.
Busetti
,
B.
,
Steyrer
,
B.
,
Lutzer
,
B.
,
Reiter
,
R.
, and
Stampfl
,
J.
,
2018
, “
A Hybrid Exposure Concept for Lithography-Based Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
413
421
. 10.1016/j.addma.2018.03.024
9.
Yang
,
Y.
,
Li
,
X.
,
Zheng
,
X.
,
Chen
,
Z.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2017
, “
3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation
,”
Adv. Mater.
,
30
(
9
), p.
1704912
. 10.1002/adma.201704912
10.
Kang
,
H.
,
Park
,
J. H.
, and
Cho
,
D.
,
2012
, “
A Pixel Based Solidification Model for Projection Based Stereolithography Technology
,”
Sens. Actuators, A
,
178
, pp.
223
229
. 10.1016/j.sna.2012.01.016
11.
Miri
,
A. K.
,
Nieto
,
D.
,
Iglesias
,
L.
,
Goodarzi Hosseinabadi
,
H.
,
Maharjan
,
S.
,
Ruiz-Esparza
,
G. U.
,
Khoshakhlagh
,
P.
,
Manbachi
,
A.
,
Dokmeci
,
M. R.
,
Chen
,
S.
,
Shin
,
S. R.
,
Zhang
,
Y. S.
, and
Khademhosseini
,
A.
,
2018
, “
Microfluidics-Enabled Multimaterial Maskless Stereolithographic Bioprinting
,”
Adv. Mater.
,
30
(
27
), p.
1800242
. 10.1002/adma.201800242
12.
Kowsari
,
K.
,
Akbari
,
S.
,
Wang
,
D.
,
Fang
,
N. X.
, and
Ge
,
Q.
,
2018
, “
High-Efficiency High-Resolution Multimaterial Fabrication for Digital Light Processing-Based Three-Dimensional Printing
,”
3D Print. Addit. Manuf.
,
5
(
3
), pp.
185
193
. 10.1089/3dp.2018.0004
13.
Han
,
D.
,
Yang
,
C.
,
Fang
,
N. X.
, and
Lee
,
H.
,
2019
, “
Rapid Multi-Material 3D Printing with Projection Micro-Stereolithography Using Dynamic Fluidic Control
,”
Addit. Manuf.
,
27
, pp.
606
615
. 10.1016/j.addma.2019.03.031
14.
Bertsch
,
A.
,
Jézéquel
,
J. Y.
, and
André
,
J. C.
,
1997
, “
Study of the Spatial Resolution of a New 3D Microfabrication Process: The Microstereophotolithography Using a Dynamic Mask-Generator Technique
,”
J. Photochem. Photobiol., A
,
107
(
1
), pp.
275
281
. 10.1016/S1010-6030(96)04585-6
15.
He
,
R.
,
Liu
,
W.
,
Wu
,
Z.
,
An
,
D.
,
Huang
,
M.
,
Wu
,
H.
,
Jiang
,
Q.
,
Ji
,
X.
,
Wu
,
S.
, and
Xie
,
Z.
,
2018
, “
Fabrication of Complex-Shaped Zirconia Ceramic Parts via a DLP – Stereolithography-Based 3D Printing Method
,”
Ceram. Int.
,
44
(
3
), pp.
3412
3416
. 10.1016/j.ceramint.2017.11.135
16.
Horiuchi
,
T.
,
Koyama
,
S.
, and
Kobayashi
,
H.
,
2015
, “
Simple Maskless Lithography Tool with a Desk-Top Size Using a Liquid-Crystal-Display Projector
,”
Microelectron. Eng.
,
141
, pp.
37
43
. 10.1016/j.mee.2015.01.003
17.
Sun
,
C.
,
Fang
,
N. X.
,
Wu
,
D.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators, A
,
121
(
1
), pp.
113
120
. 10.1016/j.sna.2004.12.011
18.
2013
, “
DLP 0.95 1080p 2 x LVDS Type A DMD Industrial
,”
Texas Instruments
.
19.
Lee
,
J. H.
,
Prud'homme
,
R. K.
, and
Aksay
,
I. A.
,
2011
, “
Cure Depth in Photopolymerization: Experiments and Theory
,”
J. Mater. Res.
,
16
(
12
), pp.
3536
3544
. 10.1557/JMR.2001.0485
20.
Tryson
,
G. R.
, and
Shultz
,
A. R.
,
1979
, “
A Calorimetric Study of Acrylate Photopolymerization
,”
J. Polym. Sci. Polym. Phys. Ed.
,
17
(
12
), pp.
2059
2075
. 10.1002/pol.1979.180171202
21.
Bennett
,
J.
,
2017
, “
Measuring UV Curing Parameters of Commercial Photopolymers Used in Additive Manufacturing
,”
Addit. Manuf.
,
18
, pp.
203
212
. 10.1016/j.addma.2017.10.009
22.
Decker
,
C.
,
1996
, “
Photoinitiated Crosslinking Polymerisation
,”
Prog. Polym. Sci.
,
21
(
4
), pp.
593
650
. 10.1016/0079-6700(95)00027-5
23.
Jacobs
,
P. F.
,
1992
,
Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography
,
Society of Manufacturing Engineers
,
College Station, TX
.
24.
Fang
,
N.
,
Sun
,
C.
, and
Zhang
,
X.
,
2004
, “
Diffusion-Limited Photopolymerization in Scanning Micro-Stereolithography
,”
Appl. Phys. A
,
79
(
8
), pp.
1839
1842
. 10.1007/s00339-004-2938-x
25.
Emami
,
M. M.
,
Barazandeh
,
F.
, and
Yaghmaie
,
F.
,
2014
, “
Scanning-Projection Based Stereolithography: Method and Structure
,”
Sens. Actuators, A
,
218
, pp.
116
124
. 10.1016/j.sna.2014.08.002
26.
Hofstetter
,
C.
,
Orman
,
S.
,
Baudis
,
S.
, and
Stampfl
,
J.
,
2018
, “
Combining Cure Depth and Cure Degree, a New Way to Fully Characterize Novel Photopolymers
,”
Addit. Manuf.
,
24
, pp.
166
172
. 10.1016/j.addma.2018.09.025
27.
Xue
,
D.
,
Wang
,
Y.
, and
Mei
,
D.
,
2019
, “
Multi-Step Exposure Method for Improving Structure Flatness in Digital Light Processing-Based Printing
,”
J. Manuf. Processes
,
39
, pp.
106
113
. 10.1016/j.jmapro.2019.02.013
28.
Park
,
I.-B.
,
Ha
,
Y.-M.
,
Kim
,
M.-S.
,
Kim
,
H.-C.
, and
Lee
,
S.-H.
,
2012
, “
Three-Dimensional Grayscale for Improving Surface Quality in Projection Microstereolithography
,”
Int. J. Precis. Eng. Manuf.
,
13
(
2
), pp.
291
298
. 10.1007/s12541-012-0036-0
29.
Pan
,
Y.
,
Zhao
,
X.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Smooth Surface Fabrication in Mask Projection Based Stereolithography
,”
J. Manuf. Processes
,
14
(
4
), pp.
460
470
. 10.1016/j.jmapro.2012.09.003
30.
Zhou
,
C.
, and
Chen
,
Y.
,
2009
, “
Calibrating Large-Area Mask Projection Stereolithography for its Accuracy and Resolution Improvements
,”
Proceedings of the 20th Annual International Solid Freeform Fabrication Symposium, SFF 2009
,
Austin, TX
,
Aug. 3–5
, pp.
82
97
.
31.
Zheng
,
X.
,
Deotte
,
J.
,
Alonso
,
M. P.
,
Farquar
,
G. R.
,
Weisgraber
,
T. H.
,
Gemberling
,
S.
,
Lee
,
H.
,
Fang
,
N.
, and
Spadaccini
,
C. M.
,
2012
, “
Design and Optimization of a Light-Emitting Diode Projection Micro-Stereolithography Three-Dimensional Manufacturing System
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
125001
. 10.1063/1.4769050
32.
Moon
,
J. H.
,
Shul
,
Y. G.
,
Han
,
H. S.
,
Hong
,
S. Y.
,
Choi
,
Y. S.
, and
Kim
,
H. T.
,
2005
, “
A Study on UV-Curable Adhesives for Optical Pick-Up: I. Photo-Initiator Effects
,”
Int. J. Adhes. Adhes.
,
25
(
4
), pp.
301
312
. 10.1016/j.ijadhadh.2004.09.003
33.
Pan
,
Y.
, and
Chen
,
Y.
,
2016
, “
Meniscus Process Optimization for Smooth Surface Fabrication in Stereolithography
,”
Addit. Manuf.
,
12
, pp.
321
333
. 10.1016/j.addma.2016.05.004
34.
Kowsari
,
K.
,
Zhang
,
B.
,
Panjwani
,
S.
,
Chen
,
Z.
,
Hingorani
,
H.
,
Akbari
,
S.
,
Fang
,
N. X.
, and
Ge
,
Q.
,
2018
, “
Photopolymer Formulation to Minimize Feature Size, Surface Roughness, and Stair-Stepping in Digital Light Processing-Based Three-Dimensional Printing
,”
Addit. Manuf.
,
24
, pp.
627
638
. 10.1016/j.addma.2018.10.037
35.
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution
,”
J. Manuf. Processes
,
14
(
2
), pp.
107
118
. 10.1016/j.jmapro.2011.10.002
You do not currently have access to this content.