Abstract

ASME Y 14.5M-2009 provides three distinct variants of composite position tolerance constraints to exercise control over the position characteristics of patterns of features of sizes such as holes. The practical implementation of this class of position tolerance constraints is hampered by a distinct lack of information relative to the ease or difficulty involved in the actual production and satisfaction of these constraints. In this research, machining experiments are carried out to produce various patterns of holes in industrial grade machines. Coordinate location data of the holes are acquired, and a nonlinear optimization formulation is developed and used to assess the producibility of these variants. Boundary curves for pattern and feature-to-feature tolerances are developed, plotted, and discussed. The influence of various variables on the producibility of these variants is also discussed. These results may help design, and manufacturing engineers exercise a more informed approach to the application and production of these composite position tolerance variants for patterns of features of sizes.

References

1.
American Society of Mechanical Engineers Y14.5M-1994
,
2009
,
Dimensioning and Tolerancing
,
American Society of Mechanical Engineers
,
New York
.
2.
Galloway
,
D. F.
,
1957
, “
Some Experiments on the Influence of Various Factors in Drill Performance
,”
Trans. ASME
,
79
, pp.
191
231
.
3.
Tueda
,
M.
,
Hasegawa
,
Y.
, and
Kimura
,
H.
,
1961
, “
On the Walking Phenomenon of Drill
,”
Jpn. Soc. Mech. Eng.
,
27
(
178
), pp.
816
825
.
4.
Lee
,
S. J.
,
Eman
,
K. F.
, and
Wu
,
S. M.
,
1989
, “
An Analysis of the Drill Wandering Motion
,”
J. Eng. Ind.
,
109
(
4
), pp.
297
304
. 10.1115/1.3187132
5.
Tangy
,
J. C.
, and
Geslot
,
R.
,
1975
, “
Precision des Trous Réalisés en Perçage en Fonction de la Géométrie D’Affutage du Foret
,”
CIRP Ann.
,
24
(
1
), pp.
33
38
.
6.
Kahng
,
C. H.
, and
Ham
,
I.
,
1975
, “
A Study on Sequential Quality Improvement in Hole Making Processes
,”
Ann. CIRP
,
24
(
1
), pp.
27
32
.
7.
Heaphy
,
M. S.
, and
Gruska
,
G. F.
,
1983
, “
Geometrically Tolerance Position Data Analysis
,”
Proceedings of North American Research Conference
,
University of Wisconsin, Madison
,
May 24–26
, pp.
1
5
.
8.
Lehtihet
,
E. A.
, and
Gunasena
,
U. N.
,
1990
, “
Statistical Models for the Relationship Between Production Errors and the Position Tolerance of a Hole
,”
Ann. CIRP
,
39
(
1
), pp.
569
572
. 10.1016/S0007-8506(07)61121-4
9.
Furness
,
R. J.
,
Wu
,
C. L.
, and
Ulsoy
,
A. G.
,
1996
, “
Statistical Analysis of the Effects of Feed, Speed, and Wear on Hole Quality in Drilling
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
367
375
. 10.1115/1.2831038
10.
Ligget
,
J. R.
,
1970
,
Fundamentals of Position Tolerance
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
11.
Yoshimoto
,
I.
,
1980
, “
Three Dimensional Dynamic Tolerance Diagram
,”
Bull, P.M.E. (T.I.T.)
, (
45
), pp.
25
27
.
12.
O’Leary
,
J. R.
,
1981
, “
A Computer Simulation of a True Position Pattern Gauge
,”
ASME Technical Paper No. 81-DE-9
, pp.
1
9
.
13.
Yoshimoto
,
I.
, and
Hagiwara
,
M.
,
1982
, “
An Example of the Verification Concerning Application of Maximum Material Principle
,”
Bull. P.M.E. (T.I.T.)
, (
50
), pp.
29
32
.
14.
Foster
,
L. W.
,
1986
,
Geo-Metric II—The Application of Geometric Tolerancing Techniques
,
Addison-Wesley
,
Reading, MA
.
15.
Bratmann
,
E.
, and
Weill
,
R.
,
1989
, “
Development of Algorithms for Composite Position Tolerance Measurement Using Coordinate Measuring Machines
,”
CIRP Sessions on Tolerancing for Function in a CAD/CAM Environment
,
Technion, Israel
,
Dec. 11–14
, Vol.
II
, pp.
1
5
.
16.
Gunasena
,
U. N.
,
Lehtihet
,
E. A.
, and
Ham
,
I.
,
1991
, “
The Verification of Composite Position Tolerance
,”
IIE Trans.
,
23
(
3
), pp.
290
299
. 10.1080/07408179108963864
17.
Ballu
,
A.
,
Bourdet
,
P.
, and
Mathieu
,
L.
,
1991
, “
The Processing Points in Coordinates Metrology in Agreement With the Definition of Standardized Specifications
,”
Ann. CIRP
,
40
(
1
), pp.
491
494
. 10.1016/S0007-8506(07)62037-X
18.
McCann
,
M. J.
,
1992
, “
An Algorithm for Locating Feature Patterns for the Verification of Composite Position Tolerancing
,”
ASME J. Mech. Des.
,
114
(
4
), pp.
626
632
. 10.1115/1.2917053
19.
Kaiser
,
M. J.
,
2000
, “
The Containment Model for Composite Position Tolerance Evaluation
,”
Precis. Eng.
,
24
(
4
), pp.
291
301
. 10.1016/S0141-6359(00)00035-0
20.
He
,
G.
,
Guo
,
L.
,
Zhang
,
M.
, and
Liu
,
P.
,
2016
, “
Evaluation of Composite Positional Error Based on Superposition and Containment Model and Geometrical Approximation Algorithm
,”
Measurement
,
94
, pp.
441
450
. 10.1016/j.measurement.2016.08.009
21.
Ranade
,
S. V.
,
Lehtihet
,
E. A.
, and
Cavalier
,
T. M.
,
2001
, “
On the Producibility of Composite Position Tolerance Specifications for Patterns of Holes
,”
Int. J. Prod. Res.
,
39
(
7
), pp.
1305
1321
. 10.1080/00207540110052139
22.
Xi
,
M.
,
Lehtihet
,
E. A.
, and
Cavalier
,
T. M.
,
2004
, “
Numerical Approximation Approach to the Producibility of Composite Position Tolerance Specifications for Patterns of Holes
,”
Int. J. Prod. Res.
,
42
(
2
), pp.
243
256
. 10.1080/0020754031000149194
23.
Jiang
,
Y.
,
2016
, “
Evaluation of the Accuracy of Multiple Machines Using Composite Position Tolerances
,”
M.S. thesis
,
Pennsylvania State University
,
State College, PA
, https://etda.libraries.psu.edu/catalog/9c67wm80s
You do not currently have access to this content.