Abstract

The friction stir welding (FSW) process shows promising results in joining dissimilar metals which are otherwise almost impossible to join using traditional welding techniques. Being a new technique, the deformation and the failure mechanism of the joints made by the FSW process needs to be investigated. In this work, a joint between AZ31 Mg alloy and DP590 steel is modeled using phenomenological crystal plasticity formulation on the mesoscale in the form of a representative volume element (RVE). The interface of the two materials is modeled using a cohesive zone model. A parametric study has been performed to understand the effect of grain size and interface fracture toughness as well as strength on the mechanical performance of the joint. It was found that the grain size of AZ31 Mg alloy, as well as DP590 steel, has little effect on the overall joint performance. On the other hand, interface fracture toughness and strength have a significant impact on the mechanical properties of the joint.

References

1.
Thomas
,
W. M.
,
Nicholas
,
E. D.
,
Needham
,
J. C.
,
Murch
,
M. G.
,
Temple-Smith
,
P.
, and
Dawes
,
C. J.
,
1995
, “
Friction Welding
,” US Patent 5,460,317.
2.
Mishra
,
R. S.
, and
Ma
,
Z.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng.: R: Rep.
,
50
(
1–2
), pp.
1
78
.
3.
Quintana Cuellar
,
K. J.
, and
Silveira
,
J. L. L.
,
2017
, “
Analysis of Torque in Friction Stir Welding of Aluminum Alloy 5052 by Inverse Problem Method
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041017
.
4.
Singh
,
K.
,
Singh
,
G.
, and
Singh
,
H.
,
2018
, “
Review on Friction Stir Welding of Magnesium Alloys
,”
J. Magn. Alloys
,
6
(
4
), pp.
399
416
.
5.
Buffa
,
G.
,
Campanella
,
D.
,
Forcellese
,
A.
,
Fratini
,
L.
,
Simoncini
,
M.
, and
Barcellona
,
A.
,
2019
, “
Constant Heat Input Friction Stir Welding of Variable Thickness AZ31 Sheets Through In-Process Tool Rotation Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081002
.
6.
Gangwar
,
K.
, and
Ramulu
,
M.
,
2018
, “
Friction Stir Welding of Titanium Alloys: A Review
,”
Mater. Des.
,
141
, pp.
230
255
.
7.
Liu
,
F.
,
Hovanski
,
Y.
,
Miles
,
M.
,
Sorensen
,
C.
, and
Nelson
,
T.
,
2018
, “
A Review of Friction Stir Welding of Steels: Tool, Material Flow, Microstructure, and Properties
,”
J. Mater. Sci. Technol.
,
34
(
1
), pp.
39
57
.
8.
Hou
,
Z.
,
Sheikh-Ahmad
,
J.
,
Jarrar
,
F.
, and
Ozturk
,
F.
,
2018
, “
Residual Stresses in Dissimilar Friction Stir Welding of AA2024, AZ31, Experimental and Numerical Study
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051015
.
9.
Hu
,
Z.-l.
,
Yu
,
H.-y.
, and
Pang
,
Q.
,
2020
, “
Investigation of Interfacial Layer for Friction Stir Welded AA7075-T6 Aluminum to DP1180 Steel Joints
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091002
.
10.
Das
,
H.
,
Upadhyay
,
P.
,
Kulkarni
,
S. S.
, and
Choi
,
W.
,
2021
, “
Dissimilar Joining of ZEK100 and AA6022 for Automotive Application
,”
Friction Stir Welding and Processing XI
,
Springer International Publishing
, pp.
115
124
.
11.
Muhamad
,
M. R.
,
Raja
,
S.
,
Jamaludin
,
M. F.
,
Yusof
,
F.
,
Morisada
,
Y.
,
Suga
,
T.
, and
Fujii
,
H.
,
2021
, “
Enhancements on Dissimilar Friction Stir Welding Between AZ31 and SPHC Mild Steel With Al-Mg As Powder Additives
,”
ASME J. Manuf. Sci. Eng.
, pp.
1
22
.
12.
Commin
,
L.
,
Dumont
,
M.
,
Masse
,
J.-E.
, and
Barrallier
,
L.
,
2009
, “
Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters
,”
Acta Mater.
,
57
(
2
), pp.
326
334
.
13.
Yang
,
J.
,
Xiao
,
B.
,
Wang
,
D.
, and
Ma
,
Z.
,
2010
, “
Effects of Heat Input on Tensile Properties and Fracture Behavior of Friction Stir Welded Mg-3Al-1Zn Alloy
,”
Mater. Sci. Eng. A.
,
527
(
3
), pp.
708
714
.
14.
Watanabe
,
T.
,
Kagiya
,
K.
,
Yanagisawa
,
A.
, and
Tanabe
,
H.
,
2006
, “
Solid-State Welding of Steel and Magnesium Alloy Using a Rotating Pin
,”
Q. J. Jpn. Welding Soc.
,
24
(
1
), pp.
108
115
.
15.
Chen
,
Y.
, and
Nakata
,
K.
,
2009
, “
Friction Stir Lap Welding of Magnesium Alloy and Zinc-Coated Steel
,”
Mater. Trans.
,
50
(
11
), pp.
2598
2603
.
16.
Chen
,
Y.
, and
Nakata
,
K.
,
2009
, “
Effect of Tool Geometry on Microstructure and Mechanical Properties of Friction Stir Lap Welded Magnesium Alloy and Steel
,”
Mater. Des.
,
30
(
9
), pp.
3913
3919
.
17.
Jana
,
S.
,
Hovanski
,
Y.
, and
Grant
,
G. J.
,
2010
, “
Friction Stir Lap Welding of Magnesium Alloy to Steel: A Preliminary Investigation
,”
Metall. Mater. Trans. A
,
41
(
12
), pp.
3173
3182
.
18.
Wang
,
T.
,
Tamayo
,
D. R.
,
Jiang
,
X.
,
Kitsopoulos
,
P.
,
Kuang
,
W.
,
Gupta
,
V.
,
Barker
,
E.
, and
Upadhyay
,
P.
,
2020
, “
Effect of Interfacial Characteristics on Magnesium to Steel Joint Obtained Using FAST
,”
Mater. Des.
,
192
, p.
108697
.
19.
Kulkarni
,
S. S.
,
Das
,
H.
,
Tamayo
,
D. R.
,
Ma
,
X.
,
Wang
,
T.
,
Zhang
,
D.
,
Upadhyay
,
P.
,
Choi
,
K. S.
,
Soulami
,
A.
, and
Herling
,
D.
,
0000
, “
A Combined Experimental and Modeling Approach to Investigate the Performance of Joint Between AZ31 Magnesium and Uncoated DP590 Steel Using Friction Stir Assisted Scribe Technique
,”
J. Mater. Eng. Perform.
(Under review).
20.
Xu
,
S.-W.
,
Deng
,
X.
,
Reynolds
,
A. P.
, and
Seidel
,
T.
,
2001
, “
Finite Element Simulation of Material Flow in Friction Stir Welding
,”
Sci. Technol. Welding Joining
,
6
(
3
), pp.
191
193
.
21.
Ulysse
,
P.
,
2002
, “
Three-dimensional Modeling of the Friction Stir-welding Process
,”
Int. J. Mach. Tools Manuf.
,
42
(
14
), pp.
1549
1557
.
22.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2014
, “
Thermo-Mechanical Finite Element Model of Friction Stir Welding of Dissimilar Alloys
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
607
617
.
23.
Gupta
,
V.
,
Upadhyay
,
P.
,
Fifield
,
L. S.
,
Roosendaal
,
T.
,
Sun
,
X.
,
Nelaturu
,
P.
, and
Carlson
,
B.
,
2018
, “
Linking Process and Structure in the Friction Stir Scribe Joining of Dissimilar Materials: A Computational Approach With Experimental Support
,”
J. Manuf. Process.
,
32
(
7
), pp.
615
624
.
24.
Reddy
,
J. N.
,
1993
,
An Introduction to the Finite Element Method
, Vol.
27
,
McGraw-Hill Education
,
New York
.
25.
Kulkarni
,
S. S.
, and
Tabarraei
,
A.
,
2019
, “
A Stochastic Analysis of the Damping Property of Filled Elastomers
,”
Macromol. Theory Simul.
,
28
(
2
), p.
1800062
.
26.
Shen
,
J.
,
Xu
,
P.
, and
Yu
,
Y.
,
2020
, “
Dynamic Characteristics Analysis and Finite Element Simulation of Steel–BFPC Machine Tool Joint Surface
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011006
.
27.
Tabarraei
,
A.
,
Wang
,
X.
,
Sadeghirad
,
A.
, and
Song
,
J.
,
2014
, “
An Enhanced Bridging Domain Method for Linking Atomistic and Continuum Domains
,”
Finite Elements Anal. Des.
,
92
(
1
), pp.
36
49
.
28.
Kulkarni
,
S.
, and
Tabarraei
,
A.
,
2018
, “
An Analytical Study of Wave Propagation in a Peridynamic Bar With Nonuniform Discretization
,”
Eng. Fract. Mech.
,
190
(
1
), pp.
347
366
.
29.
Wang
,
X.
,
Kulkarni
,
S. S.
, and
Tabarraei
,
A.
,
2019
, “
Concurrent Coupling of Peridynamics and Classical Elasticity for Elastodynamic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
344
(
4
), pp.
251
275
.
30.
Kulkarni
,
S. S.
, and
Tabarraei
,
A.
,
2020
, “
An Ordinary State Based Peridynamic Correspondence Model for Metal Creep
,”
Eng. Fract. Mech.
,
233
(
12
), p.
107042
.
31.
Helmig
,
T.
,
Peng
,
B.
,
Ehrenpreis
,
C.
,
Augspurger
,
T.
,
Frekers
,
Y.
,
Kneer
,
R.
, and
Bergs
,
T.
,
2019
, “
A Coupling Approach Combining Computational Fluid Dynamics and Finite Element Method to Predict Cutting Fluid Effects on the Tool Temperature in Cutting Processes
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101003
.
32.
Ajri
,
A.
, and
Shin
,
Y. C.
,
2017
, “
Investigation on the Effects of Process Parameters on Defect Formation in Friction Stir Welded Samples Via Predictive Numerical Modeling and Experiments
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111009
.
33.
Kulkarni
,
S. S.
,
Gupta
,
V.
,
Ortiz
,
A.
,
Das
,
H.
,
Upadhyay
,
P.
,
Barker
,
E.
, and
Herling
,
D.
,
2021
, “
Determining Cohesive Parameters for Modeling Interfacial Fracture in Dissimilar-Metal Friction Stir Welded Joints
,”
Int. J. Solids Struct.
,
216
(
1
), pp.
200
210
.
34.
Zhao
,
C.
, and
Liu
,
X.
,
2020
, “
Computational Analysis on Weld Formation Mechanism During Self-Reacting Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
, pp.
1
15
.
35.
Zhang
,
X.
,
Shivpuri
,
R.
, and
Srivastava
,
A.
,
2017
, “
A New Microstructure-Sensitive Flow Stress Model for the High-Speed Machining of Titanium Alloy Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051006
.
36.
Neto
,
D. M.
, and
Neto
,
P.
,
2013
, “
Numerical Modeling of Friction Stir Welding Process: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
65
(
1–4
), pp.
115
126
.
37.
He
,
X.
,
Gu
,
F.
, and
Ball
,
A.
,
2014
, “
A Review of Numerical Analysis of Friction Stir Welding
,”
Prog. Mater. Sci.
,
65
, pp.
1
66
.
38.
Toursangsaraki
,
M.
,
Wang
,
H.
,
Hu
,
Y.
, and
Karthik
,
D.
,
2021
, “
Crystal Plasticity Modeling of Laser Peening Effects on Tensile and High Cycle Fatigue Properties of 2024-T351 Aluminum Alloy
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071015
.
39.
He
,
W.
,
Zheng
,
L.
,
Xin
,
R.
, and
Liu
,
Q.
,
2017
, “
Microstructure-Based Modeling of Tensile Deformation of a Friction Stir Welded AZ31 Mg Alloy
,”
Mater. Sci. Eng. A
,
687
, pp.
63
72
.
40.
Sun
,
G.
,
Chen
,
Y.
,
Wei
,
X.
,
Shang
,
D.
, and
Chen
,
S.
,
2018
, “
Crystal Plastic Modeling on Fatigue Properties for Aluminum Alloy Friction Stir Welded Joint
,”
Mater. Sci. Eng. A
,
728
, pp.
165
174
.
41.
Ren
,
W.
,
Xin
,
R.
, and
Liu
,
D.
,
2019
, “
Modeling the Strongly Localized Deformation Behavior in a Magnesium Alloy With Complicated Texture Distribution
,”
Mater. Sci. Eng. A
,
762
, p.
138103
.
42.
Lee
,
E. H.
,
1969
, “
Elastic-plastic Deformation At Finite Strains
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
1
6
.
43.
Asaro
,
R. J.
,
1983
, “
Crystal Plasticity
,”
ASME J. Appl. Mech.
,
50
(
4b
), pp.
921
934
.
44.
Wang
,
K.
,
Upadhyay
,
P.
,
Wang
,
Y.
,
Li
,
J.
,
Sun
,
X.
, and
Roosendaal
,
T.
,
2018
, “
Investigation of Interfacial Layer for Friction Stir Scribe Welded Aluminum to Steel Joints
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111005
.
45.
Wang
,
T.
,
Sidhar
,
H.
,
Mishra
,
R. S.
,
Hovanski
,
Y.
,
Upadhyay
,
P.
, and
Carlson
,
B.
,
2019
, “
Evaluation of Intermetallic Compound Layer At Aluminum/steel Interface Joined by Friction Stir Scribe Technology
,”
Mater. Des.
,
174
, p.
107795
.
46.
Kasai
,
H.
,
Morisada
,
Y.
, and
Fujii
,
H.
,
2015
, “
Dissimilar FSW of Immiscible Materials: Steel/Magnesium
,”
Mater. Sci. Eng.: A
,
624
, pp.
250
255
.
47.
Das
,
H.
,
Upadhyay
,
P.
,
Wang
,
T.
,
Gwalani
,
B.
, and
Ma
,
X.
,
2021
, “
Interfacial Reaction During Friction Stir Assisted Scribe Welding of Immiscible Fe and Mg Alloy System
,”
Sci. Rep.
,
11
(
1
), pp.
1
8
.
48.
Quey
,
R.
,
Dawson
,
P.
, and
Barbe
,
F.
,
2011
, “
Large-scale 3D Random Polycrystals for the Finite Element Method: Generation, Meshing and Remeshing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
17–20
), pp.
1729
1745
.
49.
MATLAB
,
2010
,
version 7.10.0 (R2010a)
,
The MathWorks Inc.
,
Natick, MA
.
50.
Truster
,
T. J.
,
2018
, “
DEIP, Discontinuous Element Insertion Program–Mesh Generation for Interfacial Finite Element Modeling
,”
SoftwareX
,
7
(
4
), pp.
162
170
.
51.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-in Pre-and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.
52.
Briffod
,
F.
,
Shiraiwa
,
T.
, and
Enoki
,
M.
,
2019
, “
Numerical Investigation of the Influence of Twinning/Detwinning on Fatigue Crack Initiation in AZ31 Magnesium Alloy
,”
Mater. Sci. Eng. A
,
753
(
3
), pp.
79
90
.
53.
Cheng
,
J.
, and
Ghosh
,
S.
,
2015
, “
A Crystal Plasticity FE Model for Deformation With Twin Nucleation in Magnesium Alloys
,”
Int. J. Plast.
,
67
(
10
), pp.
148
170
.
54.
Zecevic
,
M.
,
Korkolis
,
Y. P.
,
Kuwabara
,
T.
, and
Knezevic
,
M.
,
2016
, “
Dual-phase Steel Sheets Under Cyclic Tension–compression to Large Strains: Experiments and Crystal Plasticity Modeling
,”
J. Mech. Phys. Solids
,
96
(
4
), pp.
65
87
.
55.
Healy
,
B.
,
Gullerud
,
A.
,
Koppenhoefer
,
K.
,
Roy
,
A.
,
RoyChowdhury
,
S.
,
Petti
,
J.
,
Walters
,
M.
,
Bichon
,
B.
,
Cochran
,
K.
,
Carlyle
,
A.
, and
Sobotka
,
J.
,
2014
,
WARP3D: 3-D Nonlinear Finite Element Analysis of Solids for Fracture and Fatigue Processes
,
University of Illinois at Urbana-Champaign
,
Urbana-Champaign, IL
.
You do not currently have access to this content.