Abstract

Additive manufacturing (AM) technology has been broadly applied to the fabrication of metallic materials. However, current approaches consume either high energy or large investment that considerably elevates their entry threshold. An economic extrusion-based AM method followed by debinding and sintering could efficiently produce the metal parts with relatively low cost and high material utilization. However, an in-depth analysis of the fatigue performance of the component built by such a technology has been little documented so far. Herein, the 316L stainless steel was fabricated throughout the printing-debinding-sintering (PDS) pathway and its fatigue properties were comprehensively assessed. Tensile and flexural fatigue tests were conducted to reveal the fatigue strength and fractural behaviors under different loading conditions, while the fatigue crack growth (FCG) test was performed to quantify the crack propagation. The results indicated the number of 105 cycles can be reached for the tensile specimens under the fatigue loading of 120 MPa, whereas 1.37 × 105 cycles were endured by the flexural specimens under 150 MPa. The fractural morphology indicated an adverse impact of the pore-induced voids on the tensile fatigue crack propagation, but such a drawback could be alleviated in the flexural loading condition. The FCG test unveiled the crack growth rate with the number of cycles and determined the material-related coefficients in the fatigue crack growth model. The research findings provided valuable insights into the effects of the PDS process and microstructures on the resultant fatigue properties of the metal component.

References

1.
Martin
,
J. H.
,
Yahata
,
B. D.
,
Hundley
,
J. M.
,
Mayer
,
J. A.
,
Schaedler
,
T. A.
, and
Pollock
,
T. M.
,
2017
, “
3D Printing of High-Strength Aluminium Alloys
,”
Nature
,
549
(
7672
), pp.
365
369
. 10.1038/nature23894
2.
Liu
,
Y.
,
Yang
,
Y.
, and
Wang
,
D.
,
2016
, “
A Study on the Residual Stress During Selective Laser Melting (SLM) of Metallic Powder
,”
Int. J. Adv. Manuf. Technol.
,
87
(
1
), pp.
647
656
. 10.1007/s00170-016-8466-y
3.
Deng
,
D.
,
Peng
,
R. L.
,
Brodin
,
H.
, and
Moverare
,
J.
,
2018
, “
Microstructure and Mechanical Properties of Inconel 718 Produced by Selective Laser Melting: Sample Orientation Dependence and Effects of Post Heat Treatments
,”
Mater. Sci. Eng. A
,
713
(
1
), pp.
294
306
. 10.1016/j.msea.2017.12.043
4.
Li
,
M.
,
Du
,
W.
,
Elwany
,
A.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Metal Binder Jetting Additive Manufacturing: A Literature Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
090801
. 10.1115/1.4047430
5.
Wohlers
,
T.
,
2017
, “
Desktop Metal: A Rising Star of Metal AM Targets Speed, Cost and High-Volume Production.
Metal AM
,
3
(
2
), pp.
89
94
. https://www.metal-am.com/wp-content/uploads/sites/4/2017/06/MAGAZINE-Metal-AM-Summer-2017-PDF-sp.pdf, Accessed February 17, 2021.
6.
Zapico
,
P.
,
Giganto
,
S.
,
Barreiro
,
J.
, and
Martinez-Pellitero
,
S.
,
2020
, “
Characterisation of 17-4PH Metallic Powder Recycling to Optimise the Performance of the Selective Laser Melting Process
,”
J. Mater. Res. Technol.
,
9
(
2
), pp.
1273
1285
. 10.1016/j.jmrt.2019.11.054
7.
Agarwala
,
M.
,
Weeren
,
R. V.
,
Bandyopadhyay
,
A.
,
Safari
,
A.
,
Danforth
,
S.
, and
Priedeman
,
J. R.
,
1996
, “
Filament Feed Materials for Fused Deposition Processing of Ceramics and Metals
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
, pp.
451
458
.
8.
Gonzalez-Gutierrez
,
J.
,
Cano
,
S.
,
Schuschnigg
,
S.
,
Kukla
,
C.
,
Sapkota
,
J.
, and
Holzer
,
C.
,
2018
, “
Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives
,”
Materials
,
11
(
5
), p.
840
. 10.3390/ma11050840
9.
Campbell
,
R.i.
, and
Wohlers
,
T.
,
2017
, “
Markforged: Taking a different approach to metal Additive Manufacturing
,”
Metal AM
,
3
(
2
), pp.
113
115
. https://www.metal-am.com/wp-content/uploads/sites/4/2017/06/MAGAZINE-Metal-AM-Summer-2017-PDF-sp.pdf, Accessed February 17, 2021.
10.
Desktop Metal
,
2021
, “
Introducing the Studio System 2
,”
Desktop Metal, Burlington, MA
, https://www.desktopmetal.com/resources/intro-to-studio-system-2, Accessed February 17, 2021.
11.
Warrier
,
N.
, and
Kate
,
K. H.
,
2018
, “
Fused Filament Fabrication 3D Printing with Low-Melt Alloys
,”
Prog. Addit. Manuf.
,
3
(
1
), pp.
51
63
. 10.1007/s40964-018-0050-6
12.
Gonzalez-Gutierrez
,
J.
,
Guráň
,
R.
,
Spoerk
,
M.
,
Holzer
,
C.
,
Godec
,
D.
, and
Kukla
,
C.
,
2018
, “
3D Printing Conditions Determination for Feedstock Used in Fused Filament Fabrication (FFF) of 17-4PH Stainless Steel Parts
,”
Metalurgija
,
57
(
1–2
), pp.
117
120
. 10.3390/ma13030774
13.
Kukla
,
C.
,
Gonzalez-Gutierrez
,
J.
,
Duretek
,
I.
,
Schuschnigg
,
S.
, and
Holzer
,
C.
,
2017
, “
Effect of Particle Size on the Properties of Highly-Filled Polymers for Fused Filament Fabrication
,”
AIP Conf. Proc.
,
1914
(
1
), p.
190006
. 10.1063/1.5016795
14.
Ren
,
L.
,
Zhou
,
X.
,
Song
,
Z.
,
Zhao
,
C.
,
Liu
,
Q.
,
Xue
,
J.
, and
Li
,
X.
,
2017
, “
Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW-LDPE-SA Binder System
,”
Materials
,
10
(
3
), p.
305
. 10.3390/ma10030305
15.
Lengauer
,
W.
,
Duretek
,
I.
,
Fürst
,
M.
,
Schwarz
,
V.
,
Gonzalez-Gutierrez
,
J.
,
Schuschnigg
,
S.
,
Kukla
,
C.
,
Kitzmantel
,
M.
,
Neubauer
,
E.
,
Lieberwirth
,
C.
, and
Morrison
,
V.
,
2019
, “
Fabrication and Properties of Extrusion-Based 3D-Printed Hardmetal and Cermet Components
,”
Int. J. Refract. Met. Hard Mater.
,
82
(
1
), pp.
141
149
. 10.1016/j.ijrmhm.2019.04.011
16.
Singh
,
P.
,
Balla
,
V. K.
,
Tofangchi
,
A.
,
Atre
,
S. V.
, and
Kate
,
K. H.
,
2020
, “
Printability Studies of Ti-6Al-4V by Metal Fused Filament Fabrication (MF3)
,”
Int. J. Refract. Met. Hard Mater.
,
91
(
1
), p.
105249
. 10.1016/j.ijrmhm.2020.105249
17.
Rane
,
K.
,
Cataldo
,
S.
,
Parenti
,
P.
,
Sbaglia
,
L.
,
Mussi
,
V.
,
Annoni
,
M.
,
Giberti
,
H.
, and
Strano
,
M.
,
2018
, “
Rapid Production of Hollow SS316 Profiles by Extrusion Based Additive Manufacturing
,”
AIP Conf. Proc.
,
1960
(
1
), p.
140014
. 10.1063/1.5035006
18.
Parenti
,
P.
,
Cataldo
,
S.
, and
Annoni
,
M.
,
2018
, “
Shape Deposition Manufacturing of 316L Parts via Feedstock Extrusion and Green-State Milling
,”
Manuf. Lett.
,
18
(
1
), pp.
6
11
. 10.1016/j.mfglet.2018.09.003
19.
Gong
,
H.
,
Crater
,
C.
,
Ordonez
,
A.
,
Ward
,
C.
,
Waller
,
M.
, and
Ginn
,
C.
,
2018
, “
Material Properties and Shrinkage of 3D Printing Parts using Ultrafuse Stainless Steel 316LX Filament
,”
MATEC Web Conf.
,
Orlando, FL
,
Oct. 13–15
, p.
01001
.
20.
Gong
,
H.
,
Snelling
,
D.
,
Kardel
,
K.
, and
Carrano
,
A.
,
2019
, “
Comparison of Stainless Steel 316L Parts Made by FDM- and SLM-Based Additive Manufacturing Processes
,”
JOM
,
71
(
3
), pp.
880
885
. 10.1007/s11837-018-3207-3
21.
Thompson
,
Y.
,
Gonzalez-Gutierrez
,
J.
,
Kukla
,
C.
, and
Felfer
,
P.
,
2019
, “
Fused Filament Fabrication, Debinding and Sintering as a Low Cost Additive Manufacturing Method of 316L Stainless Steel
,”
Addit. Manuf.
,
30
(
1
), p.
100861
. 10.1016/j.addma.2019.100861
22.
Liu
,
B.
,
Wang
,
Y.
,
Lin
,
Z.
, and
Zhang
,
T.
,
2020
, “
Creating Metal Parts by Fused Deposition Modeling and Sintering
,”
Mater. Lett.
,
263
(
1
), p.
127252
. 10.1016/j.matlet.2019.127252
23.
Gonzalez-Gutierrez
,
J.
,
Arbeiter
,
F.
,
Schlauf
,
T.
,
Kukla
,
C.
, and
Holzer
,
C.
,
2019
, “
Tensile Properties of Sintered 17-4PH Stainless Steel Fabricated by Material Extrusion Additive Manufacturing
,”
Mater. Lett.
,
248
(
1
), pp.
165
168
. 10.1016/j.matlet.2019.04.024
24.
Galati
,
M.
, and
Minetola
,
P.
,
2019
, “
Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (ADAM) Process for Metal Parts
,”
Materials
,
12
(
24
), p.
4122
. 10.3390/ma12244122
25.
Zhang
,
Y.
,
Bai
,
S.
,
Riede
,
M.
,
Garratt
,
E.
, and
Roch
,
A.
,
2020
, “
A Comprehensive Study on Fused Filament Fabrication of Ti-6Al-4V Structures
,”
Addit. Manuf.
,
34
(
1
), pp.
101256
. 10.1016/j.addma.2020.101256
26.
DIN EN ISO 643
,
2016
, “
Steels — Micrographic Determination of the Apparent Grain Size
,”
ISO
,
Geneva, Switzerland
, https://www.iso.org/standard/72193.html, Accessed February 17, 2021.
27.
ASTM E466-15
,
2015
, “
Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
,”
ASTM International
,
West Conshohocken, PA
, https://www.astm.org/Standards/E466.htm, Accessed February 17, 2021.
28.
DIN EN ISO 7438
,
2016
, “
Metallic materials — Bend test
,”
ISO
,
Geneva, Switzerland
, https://www.iso.org/standard/67980.html, Accessed February 17, 2021.
29.
ASTM E647-00
,
2000
, “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,”
ASTM International
,
West Conshohocken, PA
, https://www.astm.org/DATABASE.CART/HISTORICAL/E647-00.htm, Accessed February 17, 2021.
30.
BASF 3D Printing Solutions GmbH
,
2019
, “
Ultrafuse 316L Technical Datasheet
,”
BASF 3D Printing Solutions GmbH, Heidelberg, Germany
, https://www.ultrafusefff.com/wp-content/uploads/2019/07/Ultrafuse_316L_Technical_Data_Sheet_TDS.pdf, Accessed February 17, 2021.
31.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
533
. 10.1115/1.3656900
32.
German
,
R.
,
2014
,
Sintering: From Empirical Observations to Scientific Principles
,
Butterworth-Heinemann
,
Waltham, MA
.
33.
Röttger
,
A.
,
Boes
,
J.
,
Theisen
,
W.
,
Thiele
,
M.
,
Esen
,
C.
,
Edelmann
,
A.
, and
Hellmann
,
R.
,
2020
, “
Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel Processed by Different SLM Devices
,”
Int. J. Adv. Manuf. Technol.
,
108
(
1
), pp.
1
15
. 10.1007/s00170-020-05371-1
34.
Sebastian
,
K. V.
, and
Tendolkau
,
G. S.
,
1977
, “
Densification in W-Cu Sintered Alloys Produced From Coreduced Powders
,”
Planseeberichte für Pulvermetallurgie
,
25
(
2
), pp.
84
100
.
35.
Bai
,
Y.
,
Wagner
,
G.
, and
Williams
,
C. B.
,
2017
, “
Effect of Particle Size Distribution on Powder Packing and Sintering in Binder Jetting Additive Manufacturing of Metals
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081019
. 10.1115/1.4036640
36.
Wheat
,
E.
,
Shanbhag
,
G.
, and
Vlasea
,
M.
,
2020
, “
The Master Sinter Curve and Its Application to Binder Jetting Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101002
. 10.1115/1.4047140
37.
Riemer
,
A.
,
Leuders
,
S.
,
Thöne
,
M.
,
Richard
,
H. A.
,
Tröster
,
T.
, and
Niendorf
,
T.
,
2014
, “
On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting
,”
Eng. Fract. Mech.
,
120
(
1
), pp.
15
25
. 10.1016/j.engfracmech.2014.03.008
38.
Frost
,
N. E.
, and
Phillips
,
C. E.
,
1956
, “
Studies in the Formation and Propagation of Cracks in Fatigue Specimens
,”
Proc. Int. Conference on Fatigue of Metals
,
London
,
Sept. 10–14
, pp.
520
526
.
39.
Schijve
,
J.
,
2014
, “
The Significance of Fatigue Crack Initiation for Predictions of the Fatigue Limit of Specimens and Structures
,”
Int. J. Fatigue
,
61
(
1
), pp.
39
45
. 10.1016/j.ijfatigue.2013.10.022
40.
Blochwitz
,
C.
, and
Richter
,
R.
,
1999
, “
Plastic Strain Amplitude Dependent Surface Path of Microstructurally Short Fatigue Cracks in Face-Centred Cubic Metals
,”
Mater. Sci. Eng. A
,
267
(
1
), pp.
120
129
. 10.1016/S0921-5093(99)00060-X
41.
Wang
,
W.
,
Zhang
,
W.
,
Wang
,
H.
,
Fang
,
X.
, and
Liang
,
X.
,
2016
, “
Influence of Grain Boundary on the Fatigue Crack Growth of 7050-T7451 Aluminum Alloy Based on Small Time Scale Method
,”
Adv. Mater. Sci. Eng.
,
2016
(
1
), p.
7671530
. 10.1155/2016/7671530
42.
Turnbull
,
A.
, and
De Los Rios
,
E. R.
,
1995
, “
The Effect of Grain Size on Fatigue Crack Growth in an Aluminium Magnesium Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
,
18
(
11
), pp.
1355
1366
. 10.1111/j.1460-2695.1995.tb00861.x
You do not currently have access to this content.