Abstract

Models that are able to accurately predict the dynamic behavior of machine tools are crucial for a variety of applications ranging from machine tool design to process simulations. However, with increasing accuracy, the models tend to become increasingly complex, which can cause problems identifying the unknown parameters which the models are based on. In this paper, a method is presented that shows how parameter identification can be eased by systematically reducing the dimensionality of a given dynamic machine tool model. The approach presented is based on ranking the model’s input parameters by means of a global sensitivity analysis (GSA). It is shown that the number of parameters, which need to be identified, can be drastically reduced with only limited impact on the model’s fidelity. This is validated by means of model evaluation criteria and frequency response functions which show a mean conformity of 98.9% with the full-scale reference model. The paper is concluded by a short demonstration on how to use the results from the GSA for parameter identification.

References

1.
Altintas
,
Y.
,
Brecher
,
C.
,
Weck
,
M.
, and
Witt
,
S.
,
2005
, “
Virtual Machine Tool
,”
CIRP Ann.
,
54
(
2
), pp.
115
138
.
2.
Zaeh
,
M. F.
,
Rebelein
,
C.
, and
Semm
,
T.
,
2019
, “
Predictive Simulation of Damping Effects in Machine Tools
,”
CIRP Ann.
,
27
(
1
), pp.
67
77
.
3.
Semm
,
T.
,
Spannagl
,
M. F.
, and
Zaeh
,
M. F.
,
2018
, “
Dynamic Substructuring of Machine Tools Considering Local Damping Models
,”
Procedia CIRP
,
77
, pp.
670
674
.
4.
Semm
,
T.
,
Rebelein
,
C.
, and
Zaeh
,
M. F.
,
2019
, “
Prediction of the Position Dependent Dynamic Behavior of a Machine Tool Considering Local Damping Effects
,”
CIRP J. Manuf. Sci. Technol.
,
27
, pp.
68
77
.
5.
Semm
,
T.
,
Nierlich
,
M. B.
, and
Zaeh
,
M. F.
,
2019
, “
Substructure Coupling of a Machine Tool in Arbitrary Axis Positions Considering Local Linear Damping Models
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071014
.
6.
Semm
,
T.
,
Sellemond
,
M.
,
Rebelein
,
C.
, and
Zaeh
,
M. F.
,
2020
, “
Efficient Dynamic Parameter Identification Framework for Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
142
(
8
), p.
081003
.
7.
Niehues
,
K.
,
2015
, “
Identification of Linear Damping Models for Machine Tool Structures
,”
Ph.D. thesis
,
Technische Universität München
,
München
.
8.
Schwarz
,
S.
,
2015
, “
Predictive Capability of Dynamic Simulations of Machine Tool Structures
,”
Ph.D. thesis
,
Technische Universität München
,
München
.
9.
Ren
,
W.
, and
Chen
,
H.
,
2010
, “
Finite Element Model Updating in Structural Dynamics by Using the Response Surface Method
,”
Eng. Struct.
,
32
(
8
), pp.
2455
2465
.
10.
Semm
,
T.
,
Spescha
,
D.
,
Ceresa
,
N.
,
Zaeh
,
M. F.
, and
Wegener
,
K.
,
2020
, “
Efficient Dynamic Machine Tool Simulation With Included Damping and Linearized Friction Effects
,”
Procedia CIRP
,
93
, pp.
1442
1447
.
11.
Brecher
,
C.
,
Fey
,
M.
, and
Bäumler
,
S.
,
2013
, “
Damping Models for Machine Tool Components of Linear Axes
,”
CIRP Ann.
,
62
(
1
), pp.
399
402
.
12.
Apprich
,
S.
,
Wulle
,
F.
,
Pott
,
A.
, and
Verl
,
A.
,
2016
, “
Online Parameter Identification for a Linear Parameter-Varying Model of Large-Scale Lightweight Machine Tool Structures With Pose-Dependent Dynamic Behavior
,”
IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Banff, Canada
,
July 12–15
,
IEEE
, pp.
1558
1563
.
13.
Sato
,
R.
,
2012
, “
Development of a Feed Drive Simulator
,”
Key Eng. Mater.
,
516
, pp.
154
159
.
14.
Zhu
,
J.
,
Zhang
,
T.
,
Wang
,
J.
, and
Li
,
X.
,
2016
, “
Axial Dynamic Characteristic Parameters Identification of Rolling Joints in a Ball Screw Feed Drive System
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
230
(
14
), pp.
2449
2462
.
15.
Zou
,
X.
,
Zhao
,
X.
,
Li
,
G.
,
Li
,
Z.
, and
Sun
,
T.
,
2017
, “
Sensitivity Analysis Using a Variance-Based Method for a Three-Axis Diamond Turning Machine
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9–12
), pp.
4429
4443
.
16.
Rebelein
,
C.
,
2019
, “
Predictive Simulation of Damping Effects in Mechatronic Machine Tool Structures
,”
Ph.D. thesis
,
Technische Universität München
,
München
.
17.
Hernandez-Vazquez
,
J.
,
Garitaonandia
,
I.
,
Fernandes
,
M. H.
,
Albizuri
,
J.
, and
Munoa
,
J.
,
2014
, “
Comparison of Updating Strategies to Improve Finite Element Models of Multi-Axis Machine Tools
,”
Proceedings of the 9th International Conference on Structural Dynamics
,
Porto, Portugal
,
June 30–July 2
.
18.
Hernandez-Vazquez
,
J.
,
Garitaonandia
,
I.
,
Fernandes
,
M. H.
,
Munoa
,
J.
, and
Lacalle
,
L. N.
,
2018
, “
A Consistent Procedure Using Response Surface Methodology to Identify Stiffness Properties of Connections in Machine Tools
,”
Materials
,
11
(
7
), p.
1220
.
19.
Witt
,
S. T.
,
2007
, “
Integrierte Simulation von Maschine, Werkstück und spanendem Fertigungsprozess
,”
Ph.D. thesis
,
Rheinisch-Westfälische Technische Hochschule Aachen
,
Aachen
.
20.
Saltelli
,
A.
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons Ltd
,
Chichester
.
21.
Friswell
,
M. I.
, and
Mottershead
,
J.
,
1996
,
Finite Element Model Updating in Structural Dynamics
, (reprint ed., Vol.
38
,
Solid Mechanics and Its Applications
),
Kluwer
,
Dordrecht
.
22.
Cheng
,
Q.
,
Zhao
,
H.
,
Zhang
,
G.
,
Gu
,
P.
, and
Cai
,
L.
,
2014
, “
An Analytical Approach for Crucial Geometric Errors Identification of Multi-Axis Machine Tool Based on Global Sensitivity Analysis
,”
Int. J. Adv. Manuf. Technol.
,
75
(
1–4
), pp.
107
121
.
23.
Miro
,
S.
,
Hartmann
,
D.
, and
Schanz
,
T.
,
2014
, “
Global Sensitivity Analysis for Subsoil Parameter Estimation in Mechanized Tunneling
,”
Comput. Geotech.
,
56
, pp.
80
88
.
24.
Fraikin
,
N.
,
Funk
,
K.
,
Frey
,
M.
, and
Gauterin
,
F.
,
2019
, “
Dimensionality Reduction and Identification of Valid Parameter Bounds for the Efficient Calibration of Automated Driving Functions
,”
Autom. Engine Technol.
,
4
(
1–2
), pp.
75
91
.
25.
Semm
,
T.
,
Fischer
,
A.
, and
Zaeh
,
M. F.
,
2020
, “
Identification of Optimization Potentials Using Flexible Multibody Models With Local Damping Information
,”
14th CIRP Conference on Intelligent Computation in Manufacturing Engineering
, Vol.
99
,
Naples, Italy
,
July 15–17
, pp.
75
79
.
26.
Heylen
,
W.
, and
Lammens
,
S.
,
1996
, “FRAC: A Consistent Way of Comparing Frequency Response Functions,”
Identification in Engineering Systems
,
M. I.
Friswell
and
J.
Mottershead
, eds.,
University of Wales
,
Swansea
, pp.
48
57
.
27.
Haapaniemi
,
H.
,
Luukkanen
,
P.
,
Nurkkala
,
P.
,
Rostedt
,
J.
, and
Saarenheimo
,
A.
,
2003
, “
Correlation Analysis of Modal Analysis Results From a Pipeline
,”
A Conference and Exposition on Structural Dynamics
.
28.
Herman
,
J.
, and
Usher
,
W.
,
2017
, “
SALib: An Open-Source Python Library for Sensitivity Analysis
,”
J. Open Sourc. Softw.
,
2
(
9
), p.
97
.
29.
Spescha
,
D.
,
Weikert
,
S.
, and
Wegener
,
K.
,
2020
, “Simulation in the Design of Machine Tools,”
Reinventing Mechatronics
,
X.-T.
Yan
,
D.
Bradley
,
D.
Russell
, and
P.
Moore
, eds.,
Springer International Publishing
,
Cham
, pp.
163
177
.
30.
Semm
,
T.
,
2020
, “
Position-Flexible Modeling Approach for an Efficient Optimization of the Machine Tool Dynamics Considering Local Damping Effects
,”
Ph.D. thesis
,
Technische Universität München
,
München
.
You do not currently have access to this content.