Abstract

High-strength Al-Zn-Mg-Cu alloys such as AA7075 have drawn considerable attention and interest from both industry and academia owing to their high-specific strengths and good fatigue resistance. Wire-arc directed energy deposition, an emerging near-net-shape manufacturing technology, faces significant challenges in printing AA7075 due to its hot cracking susceptibility. In this study, we use nano-treated AA7075 wire as feedstock to additively manufacture a crack-free deposition of the high-performance alloy. After T6 heat treatment, the nano-treated AA7075 achieves exceptional yield strength (510.3 MPa), ultimate tensile strength (606.0 MPa), and elongation (12.6%). In addition, nanoparticles homogenize the microstructure upon solidification and inhibit grain growth from cyclic thermal exposure, yielding refined, equiaxed grains throughout the deposition and enabling isotropic mechanical properties in both as-built and T6-treated conditions. Thus, this study highlights a promising intersection of nano-treatment and wire-arc directed energy deposition for printing traditionally unprintable materials.

References

1.
Sha
,
G.
, and
Cerezo
,
A.
,
2004
, “
Early-Stage Precipitation in Al–Zn–Mg–Cu Alloy (7050)
,”
Acta Mater.
,
52
(
15
), pp.
4503
4516
.
2.
Buha
,
J.
,
Lumley
,
R. N.
, and
Crosky
,
A. G.
,
2008
, “
Secondary Ageing in an Aluminium Alloy 7050
,”
Mater. Sci. Eng. A
,
492
(
1–2
), pp.
1
10
.
3.
Dursun
,
T.
, and
Soutis
,
C.
,
2014
, “
Recent Developments in Advanced Aircraft Aluminium Alloys
,”
Mater. Des. 1980–2015
,
56
, pp.
862
871
.
4.
Rao
,
A. C. U.
,
Vasu
,
V.
,
Govindaraju
,
M.
, and
Srinadh
,
K. V. S.
,
2016
, “
Stress Corrosion Cracking Behaviour of 7xxx Aluminum Alloys: A Literature Review
,”
Trans. Nonferrous Met. Soc. China
,
26
(
6
), pp.
1447
1471
.
5.
Pan
,
S.
,
Jin
,
K.
,
Wang
,
T.
,
Zhang
,
Z.
,
Zheng
,
L.
, and
Umehara
,
N.
,
2022
, “
Metal Matrix Nanocomposites in Tribology: Manufacturing, Performance, and Mechanisms
,”
Friction
,
10
(
10
), pp.
1596
1634
.
6.
Dong
,
B.
,
Cai
,
X.
,
Lin
,
S.
,
Li
,
X.
,
Fan
,
C.
,
Yang
,
C.
, and
Sun
,
H.
,
2020
, “
Wire Arc Additive Manufacturing of Al-Zn-Mg-Cu Alloy: Microstructures and Mechanical Properties
,”
Addit. Manuf.
,
36
, p.
101447
.
7.
Sarrafi
,
R.
, and
Kovacevic
,
R.
, “
Cathodic Cleaning of Oxides From Aluminum Surface by Variable-Polarity Arc
,”
Weld. J.
,
89
(
1
), pp.
1S
10S
.
8.
Opprecht
,
M.
,
Garandet
,
J.-P.
,
Roux
,
G.
,
Flament
,
C.
, and
Soulier
,
M.
,
2020
, “
A Solution to the Hot Cracking Problem for Aluminium Alloys Manufactured by Laser Beam Melting
,”
Acta Mater.
,
197
, pp.
40
53
.
9.
Stopyra
,
W.
,
Gruber
,
K.
,
Smolina
,
I.
,
Kurzynowski
,
T.
, and
Kuźnicka
,
B.
,
2020
, “
Laser Powder Bed Fusion of AA7075 Alloy: Influence of Process Parameters on Porosity and Hot Cracking
,”
Addit. Manuf.
,
35
, p.
101270
.
10.
Eskin
,
D. G.
, and
Katgerman
,
L.
,
2004
, “
Mechanical Properties in the Semi-Solid State and Hot Tearing of Aluminium Alloys
,”
Prog. Mater. Sci.
,
49
(
5
), pp.
629
711
.
11.
Sokoluk
,
M.
,
Yuan
,
J.
,
Pan
,
S.
, and
Li
,
X.
,
2021
, “
Nanoparticles Enabled Mechanism for Hot Cracking Elimination in Aluminum Alloys
,”
Metall. Mater. Trans. A
,
52
(
7
), pp.
3083
3096
.
12.
Klein
,
T.
,
Schnall
,
M.
,
Gomes
,
B.
,
Warczok
,
P.
,
Fleischhacker
,
D.
, and
Morais
,
P. J.
,
2021
, “
Wire-Arc Additive Manufacturing of a Novel High-Performance Al-Zn-Mg-Cu Alloy: Processing, Characterization and Feasibility Demonstration
,”
Addit. Manuf.
,
37
, p.
101663
.
13.
Sokoluk
,
M.
,
Cao
,
C.
,
Pan
,
S.
, and
Li
,
X.
,
2019
, “
Nanoparticle-Enabled Phase Control for Arc Welding of Unweldable Aluminum Alloy 7075
,”
Nat. Commun.
,
10
(
1
), p.
98
.
14.
Zheng
,
T.
,
Pan
,
S.
,
Murali
,
N.
,
Li
,
B.
, and
Li
,
X.
,
2022
, “
Selective Laser Melting of Novel 7075 Aluminum Powders With Internally Dispersed TiC Nanoparticles
,”
Mater. Lett.
,
319
, p.
132268
.
15.
Oropeza
,
D.
,
Hofmann
,
D. C.
,
Williams
,
K.
,
Firdosy
,
S.
,
Bordeenithikasem
,
P.
,
Sokoluk
,
M.
,
Liese
,
M.
,
Liu
,
J.
, and
Li
,
X.
,
2020
, “
Welding and Additive Manufacturing With Nanoparticle-Enhanced Aluminum 7075 Wire
,”
J. Alloys Compd.
,
834
, p.
154987
.
16.
Wang
,
T.
,
Mazánová
,
V.
, and
Liu
,
X.
,
2022
, “
Ultrasonic Effects on Gas Tungsten Arc Based Wire Additive Manufacturing of Aluminum Matrix Nanocomposite
,”
Mater. Des.
,
214
, p.
110393
.
17.
ASM Handbook Committee
,
1991
, “Heat Treating of Aluminum Alloys,”
ASM Handbook
,
ASM International
,
Materials Park, OH
, pp.
841
879
.
18.
Morais
,
P. J.
,
Gomes
,
B.
,
Santos
,
P.
,
Gomes
,
M.
,
Gradinger
,
R.
,
Schnall
,
M.
,
Bozorgi
,
S.
, et al
,
2020
, “
Characterisation of a High-Performance Al–Zn–Mg–Cu Alloy Designed for Wire Arc Additive Manufacturing
,”
Materials
,
13
(
7
), p.
1610
.
19.
Davis
,
J. R.
,
1998
,
Metals Handbook Desk Edition
,
American Society of Mechanical Engineers
,
Materials Park, OH
.
20.
Klein
,
T.
,
Arnoldt
,
A.
,
Lahnsteiner
,
R.
, and
Schnall
,
M.
,
2022
, “
Microstructure and Mechanical Properties of a Structurally Refined Al–Mg–Si Alloy for Wire-Arc Additive Manufacturing
,”
Mater. Sci. Eng. A
,
830
, p.
142318
.
21.
Zuo
,
M.
,
Sokoluk
,
M.
,
Cao
,
C.
,
Yuan
,
J.
,
Zheng
,
S.
, and
Li
,
X.
,
2019
, “
Microstructure Control and Performance Evolution of Aluminum Alloy 7075 by Nano-Treating
,”
Sci. Rep.
,
9
(
1
), p.
10671
.
22.
Yuan
,
J.
,
Zuo
,
M.
,
Sokoluk
,
M.
,
Yao
,
G.
,
Pan
,
S.
, and
Li
,
X.
,
2020
, “Nanotreating High-Zinc Al–Zn–Mg–Cu Alloy by TiC Nanoparticles,”
Light Metals 2020
,
A
.
Tomsett
, ed.,
Springer International Publishing
,
Cham
, pp.
318
323
.
23.
Kok
,
Y.
,
Tan
,
X. P.
,
Wang
,
P.
,
Nai
,
M. L. S.
,
Loh
,
N. H.
,
Liu
,
E.
, and
Tor
,
S. B.
,
2018
, “
Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review
,”
Mater. Des.
,
139
, pp.
565
586
.
24.
Xu
,
D.
,
Li
,
Z.
,
Wang
,
G.
,
Li
,
X.
,
Lv
,
X.
,
Zhang
,
Y.
,
Fan
,
Y.
, and
Xiong
,
B.
,
2017
, “
Phase Transformation and Microstructure Evolution of an Ultra-High Strength Al-Zn-Mg-Cu Alloy During Homogenization
,”
Mater. Charact.
,
131
, pp.
285
297
.
25.
Liu
,
Y.
,
Jiang
,
D.
,
Xie
,
W.
,
Hu
,
J.
, and
Ma
,
B.
,
2014
, “
Solidification Phases and Their Evolution During Homogenization of a DC Cast Al–8.35Zn–2.5Mg–2.25Cu Alloy
,”
Mater. Charact.
,
93
, pp.
173
183
.
26.
Chung
,
T.-F.
,
Yang
,
Y.-L.
,
Huang
,
B.-M.
,
Shi
,
Z.
,
Lin
,
J.
,
Ohmura
,
T.
, and
Yang
,
J.-R.
,
2018
, “
Transmission Electron Microscopy Investigation of Separated Nucleation and In-Situ Nucleation in AA7050 Aluminium Alloy
,”
Acta Mater.
,
149
, pp.
377
387
.
27.
Cunningham
,
C. R.
,
Flynn
,
J. M.
,
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2018
, “
Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing
,”
Addit. Manuf.
,
22
, pp.
672
686
.
28.
Williams
,
S. W.
,
Martina
,
F.
,
Addison
,
A. C.
,
Ding
,
J.
,
Pardal
,
G.
, and
Colegrove
,
P.
,
2016
, “
Wire + Arc Additive Manufacturing
,”
Mater. Sci. Technol.
,
32
(
7
), pp.
641
647
.
29.
Guo
,
E.
,
Shuai
,
S.
,
Kazantsev
,
D.
,
Karagadde
,
S.
,
Phillion
,
A. B.
,
Jing
,
T.
,
Li
,
W.
, and
Lee
,
P. D.
,
2018
, “
The Influence of Nanoparticles on Dendritic Grain Growth in Mg Alloys
,”
Acta Mater.
,
152
, pp.
127
137
.
30.
Wang
,
K.
,
Jiang
,
H. Y.
,
Jia
,
Y. W.
,
Zhou
,
H.
,
Wang
,
Q. D.
,
Ye
,
B.
, and
Ding
,
W. J.
,
2016
, “
Nanoparticle-Inhibited Growth of Primary Aluminum in Al–10Si Alloys
,”
Acta Mater.
,
103
, pp.
252
263
.
31.
Chen
,
L.-Y.
,
Xu
,
J.-Q.
,
Choi
,
H.
,
Pozuelo
,
M.
,
Ma
,
X.
,
Bhowmick
,
S.
,
Yang
,
J.-M.
,
Mathaudhu
,
S.
, and
Li
,
X.-C.
,
2015
, “
Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles
,”
Nature
,
528
(
7583
), pp.
539
543
.
32.
Kumar
,
A.
,
Sharma
,
S. K.
,
Pal
,
K.
, and
Mula
,
S.
,
2017
, “
Effect of Process Parameters on Microstructural Evolution, Mechanical Properties and Corrosion Behavior of Friction Stir Processed Al 7075 Alloy
,”
J. Mater. Eng. Perform.
,
26
(
3
), pp.
1122
1134
.
33.
Pan
,
S.
,
Sokoluk
,
M.
,
Cao
,
C.
,
Guan
,
Z.
, and
Li
,
X.
,
2019
, “
Facile Fabrication and Enhanced Properties of Cu-40 Wt% Zn/WC Nanocomposite
,”
J. Alloys Compd.
,
784
, pp.
237
243
.
34.
Sato
,
Y. S.
,
Urata
,
M.
,
Kokawa
,
H.
, and
Ikeda
,
K.
,
2003
, “
Hall–Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys
,”
Mater. Sci. Eng. A
,
354
(
1–2
), pp.
298
305
.
35.
Cáceres
,
C. H.
,
Griffiths
,
J. R.
,
Pakdel
,
A. R.
, and
Davidson
,
C. J.
,
2005
, “
Microhardness Mapping and the Hardness-Yield Strength Relationship in High-Pressure Diecast Magnesium Alloy AZ91
,”
Mater. Sci. Eng. A
,
402
(
1–2
), pp.
258
268
.
36.
Moon
,
J.
,
Kim
,
S.
,
Jang
,
J.
,
Lee
,
J.
, and
Lee
,
C.
,
2008
, “
Orowan Strengthening Effect on the Nanoindentation Hardness of the Ferrite Matrix in Microalloyed Steels
,”
Mater. Sci. Eng. A
,
487
(
1–2
), pp.
552
557
.
37.
Yang
,
H.
,
Jiang
,
L.
,
Balog
,
M.
,
Krizik
,
P.
, and
Schoenung
,
J. M.
,
2017
, “
Reinforcement Size Dependence of Load Bearing Capacity in Ultrafine-Grained Metal Matrix Composites
,”
Metall. Mater. Trans. A
,
48
(
9
), pp.
4385
4392
.
38.
Xu
,
J. Q.
,
Chen
,
L. Y.
,
Choi
,
H.
, and
Li
,
X. C.
,
2012
, “
Theoretical Study and Pathways for Nanoparticle Capture During Solidification of Metal Melt
,”
J. Phys. Condens. Matter
,
24
(
25
), p.
255304
.
39.
Yuan
,
J.
,
Pan
,
S.
,
Zheng
,
T.
, and
Li
,
X.
,
2021
, “
Nanoparticle Promoted Solution Treatment by Reducing Segregation in AA7034
,”
Mater. Sci. Eng. A
,
822
, p.
141691
.
You do not currently have access to this content.