Abstract

The present study explores the application of static shoulder friction stir welding (SSFSW) to address the challenges of poor mechanical properties in conventional Al–Ti dissimilar friction stir joints, which arise due to significant material mixing, and the formation of thick intermetallic layers. The results show that SSFSW inhibited material mixing, and the mutual diffusion of Al and Ti was suppressed due to lower heat input. Mutual interdiffusion of Al and Ti was directed by an exothermic chemical reaction, forming an Al5Ti2—Al3Ti sequence due to the sluggish diffusion of Al in Ti at a temperature of 512 °C achieved in this study. The microstructure at the stir zone (SZ) comprised equiaxed grains with Ti particles acting as dispersoids for nucleation, whereas the presence of large Ti blocks at SZ of conventional FSW (CFSW) resisted plastic deformation, resulting in a nonhomogeneous concentration of dislocations near its interface. A significant decrease in grain size at all the critical zones of weldment was due to the rearrangement of dislocations through the slip-and-climb mechanism, as evidenced by the occurrence of dynamic recrystallization. The emergence of γ-fiber and basal fiber texture contributed to a significant enhancement in the tensile strength of SSFSW (289 MPa). The study also analyzed the various strengthening mechanisms contributing to the improved yield strength of SSFSW weldments, and the results showed that grain boundary strengthening plays a predominant role in enhancing the strength of SSFSW.

References

1.
Vaidya
,
W. V.
,
Horstmann
,
M.
,
Ventzke
,
V.
,
Petrovski
,
B.
,
Koçak
,
M.
,
Kocik
,
R.
, and
Tempus
,
G.
,
2010
, “
Improving Interfacial Properties of a Laser Beam Welded Dissimilar Joint of Aluminium AA6056 and Titanium Ti6Al4V for Aeronautical Applications
,”
J. Mater. Sci.
,
45
(
22
), pp.
6242
6254
.
2.
Möller
,
F.
,
Thomy
,
C.
, and
Vollertsen
,
F.
,
2012
, “
Joining of Titanium-Aluminium Seat Tracks for Aircraft Applications—System Technology and Joint Properties
,”
Weld. World
,
56
(
3–4
), pp.
108
114
.
3.
Kim
,
Y. C.
, and
Fuji
,
A.
,
2002
, “
Factors Dominating Joint Characteristics in Ti—Al Friction Welds
,”
Sci. Technol. Weld. Join.
,
7
(
3
), pp.
149
154
.
4.
Zhao
,
H.
,
Yu
,
M.
,
Jiang
,
Z.
,
Zhou
,
L.
, and
Song
,
X.
,
2019
, “
Interfacial Microstructure and Mechanical Properties of Al/Ti Dissimilar Joints Fabricated via Friction Stir Welding
,”
J. Alloys Compd.
,
789
, pp.
139
149
.
5.
El-Sayed
,
M. M.
,
Shash
,
A. Y.
,
Abd-Rabou
,
M.
, and
ElSherbiny
,
M. G.
,
2021
, “
Welding and Processing of Metallic Materials by Using Friction Stir Technique: A Review
,”
J. Adv. Join. Process.
,
3
, p.
100059
.
6.
Shehabeldeen
,
T. A.
,
Yin
,
Y.
,
Ji
,
X.
,
Shen
,
X.
,
Zhang
,
Z.
, and
Zhou
,
J.
,
2021
, “
Investigation of the Microstructure, Mechanical Properties and Fracture Mechanisms of Dissimilar Friction Stir Welded Aluminium/Titanium Joints
,”
J. Mater. Res. Technol.
,
11
, pp.
507
518
.
7.
Hou
,
W.
,
Ahmad Shah
,
L. H.
,
Huang
,
G.
,
Shen
,
Y.
, and
Gerlich
,
A.
,
2020
, “
The Role of Tool Offset on the Microstructure and Mechanical Properties of Al/Cu Friction Stir Welded Joints
,”
J. Alloys Compd.
,
825
, p.
154045
.
8.
Kar
,
A.
,
Kailas
,
S. V.
, and
Suwas
,
S.
,
2020
, “
Formation Sequence of Intermetallics and Kinetics of Reaction Layer Growth During Solid State Reaction Between Titanium and Aluminum
,”
Materialia
,
11
, p.
100702
.
9.
Russell
,
M. J.
,
Blignault
,
C.
,
Horrex
,
N. L.
, and
Wiesner
,
C. S.
,
2008
, “
Recent Developments in the Friction Stir Welding of Titanium Alloys
,”
Weld. World
,
52
(
9–10
), pp.
12
15
.
10.
Ji
,
H.
,
Deng
,
Y.
,
Xu
,
H.
,
Lin
,
S.
,
Wang
,
W.
, and
Dong
,
H.
,
2020
, “
The Mechanism of Rotational and Non-Rotational Shoulder Affecting the Microstructure and Mechanical Properties of Al-Mg-Si Alloy Friction Stir Welded Joint
,”
Mater. Des.
,
192
, p.
108729
.
11.
Sinhmar
,
S.
, and
Dwivedi
,
D. K.
,
2020
, “
Art of Friction Stir Welding to Produce Weld Joint Without Rotation of Shoulder With Narrow Heat-Affected Zone and High Corrosion Resistance
,”
Sci. Technol. Weld. Join.
,
25
(
6
), pp.
490
495
.
12.
Zhao
,
Y.
,
You
,
J.
,
Qin
,
J.
,
Dong
,
C.
,
Liu
,
L.
,
Liu
,
Z.
, and
Miao
,
S.
,
2022
, “
Stationary Shoulder Friction Stir Welding of Al–Cu Dissimilar Materials and Its Mechanism for Improving the Microstructures and Mechanical Properties of Joint
,”
Mater. Sci. Eng.: A
,
837
, p.
142754
.
13.
Lader
,
S. K.
,
Baruah
,
M.
, and
Ballav
,
R.
,
2023
, “
Improvement in the Weldability and Mechanical Properties of CuZn40 and AA1100-O Dissimilar Joints by Underwater Friction Stir Welding
,”
J. Manuf. Process.
,
85
, pp.
1154
1172
.
14.
Mao
,
Y.
,
Qin
,
D.
,
Xiao
,
X.
,
Wang
,
X.
, and
Fu
,
L.
,
2023
, “
Achievement of High-Strength Al/Cu Dissimilar Joint During Submerged Friction Stir Welding and Its Regulation Mechanism of Intermetallic Compounds Layer
,”
Mater. Sci. Eng.: A
,
865
, p.
144164
.
15.
Sundar
,
A. S.
,
Mugada
,
K. K.
, and
Kumar
,
A.
,
2023
, “
Microstructural Evolution, Intermetallic Formation and Mechanical Performance of Dissimilar Al6061-Ti6Al4V Static Shoulder Friction Stir Welds
,”
Adv. Eng. Mater.
16.
Sundar
,
A. S.
,
Kar
,
A.
,
Mugada
,
K. K.
, and
Kumar
,
A.
,
2023
, “
Enhancement of Microstructure, Micro-Texture, and Mechanical Properties of Al6061 Friction Stir Welds Using the Developed Static Shoulder Welding Tool
,”
Mater. Charact.
,
203
, p.
113148
.
17.
Ji
,
S. M.
,
Jang
,
S. M.
,
Lee
,
Y. S.
,
Kwak
,
H. M.
,
Choi
,
J. M.
, and
Joun
,
M. S.
,
2022
, “
Characterization of Ti-6Al-4V Alloy in the Temperature Range of Warm Metal Forming and Fracture Analysis of the Warm Capping Process
,”
J. Mater. Res. Technol.
,
18
, pp.
1590
1606
.
18.
Kumar
,
A. P.
,
Yadav
,
D.
,
Perugu
,
C. S.
, and
Kailas
,
S. V.
,
2017
, “
Influence of Particulate Reinforcement on Microstructure Evolution and Tensile Properties of In-Situ Polymer Derived MMC by Friction Stir Processing
,”
Mater. Des.
,
113
, pp.
99
108
.
19.
Kar
,
A.
,
Suwas
,
S.
, and
Kailas
,
S. V.
,
2018
, “
Two-Pass Friction Stir Welding of Aluminum Alloy to Titanium Alloy: A Simultaneous Improvement in Mechanical Properties
,”
Mater. Sci. Eng.: A
,
733
, pp.
199
210
.
20.
Doel
,
T. J. A.
, and
Bowen
,
P.
,
1996
, “
Tensile Properties of Particulate-Reinforced Metal Matrix Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
27
(
8
), pp.
655
665
.
21.
Kattner
,
U. R.
,
Lin
,
J. C.
, and
Chang
,
Y. A.
,
1992
, “
Thermodynamic Assessment and Calculation of the Ti-Al System
,”
Metall. Mater. Trans. A: Phys. Metall. Mater. Sci.
,
23A
(
8
), pp.
2081
2090
.
22.
Illeková
,
E.
,
Gachon
,
J. C.
,
Rogachev
,
A.
,
Grigoryan
,
H.
,
Schuster
,
J. C.
,
Nosyrev
,
A.
, and
Tsygankov
,
P.
,
2008
, “
Kinetics of Intermetallic Phase Formation in the Ti/Al Multilayers
,”
Thermochim. Acta
,
469
(
1–2
), pp.
77
85
.
23.
Sujata
,
M.
,
Bhargava
,
S.
, and
Sangal
,
S.
,
1997
, “
On the Formation of TiAl3 During Reaction Between Solid Ti and Liquid Al
,”
J. Mater. Sci. Lett.
,
16
(
13
), pp.
1175
1178
.
24.
Zhang
,
Q.
,
Xiao
,
B. L.
, and
Ma
,
Z. Y.
,
2013
, “
Mechanically Activated Effect of Friction Stir Processing in Al–Ti Reaction
,”
Mater. Chem. Phys.
,
139
(
2–3
), pp.
596
602
.
25.
Sundar
,
A. S.
,
Kumar
,
A.
, and
Mugada
,
K. K.
,
2022
, “
Investigation of Material Flow, Microstructure Evolution, and Texture Development in Dissimilar Friction Stir Welding of Al6061 to Ti6Al4V
,”
Mater. Today Commun.
,
33
, p.
104424
.
26.
Wei
,
Y.
,
Li
,
J.
,
Xiong
,
J.
,
Huang
,
F.
,
Zhang
,
F.
, and
Raza
,
S. H.
,
2012
, “
Joining Aluminum to Titanium Alloy by Friction Stir Lap Welding With Cutting Pin
,”
Mater. Charact.
,
71
, pp.
1
5
.
27.
Ali
,
N.
,
Lone
,
N. F.
,
Khan
,
T.
,
Qazi
,
A. M.
,
Mukhopadhyay
,
A. K.
, and
Siddiquee
,
A. N.
,
2023
, “
A Comparative Study of Effect of Tool-Offset Position on Defect Dynamics and Formation of Intermetallic Compounds in Friction Stir Welding of Al-Ti Dissimilar Joints
,”
J. Mater. Eng. Perform.
28.
Osten
,
J.
,
Milkereit
,
B.
,
Schick
,
C.
, and
Kessler
,
O.
,
2015
, “
Dissolution and Precipitation Behaviour During Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates
,”
Materials
,
8
(
5
), pp.
2830
2848
.
29.
Arsenault
,
R. J.
, and
Shi
,
N.
,
1986
, “
Dislocation Generation Due to Differences Between the Coefficients of Thermal Expansion
,”
Mater. Sci. Eng.
,
81
, pp.
175
187
.
30.
Nardone
,
V. C.
, and
Prewo
,
K. M.
,
1986
, “
On the Strength of Discontinuous Silicon Carbide Reinforced Aluminum Composites
,”
Scr. Metall.
,
20
(
1
), pp.
43
48
.
31.
Courtney
,
T.
,
2013
,
Mechanical Behavior of Materials
, 4th ed.,
Pearson Education Limited
.
32.
Habibnejad-Korayem
,
M.
,
Mahmudi
,
R.
, and
Poole
,
W. J.
,
2009
, “
Enhanced Properties of Mg-Based Nano-Composites Reinforced With Al2O3 Nano-Particles
,”
Mater. Sci. Eng.: A
,
519
(
1–2
), pp.
198
203
.
You do not currently have access to this content.