Abstract

Press-hardened steel (PHS), characterized by its extremely high strength, has wide applications in vehicle body manufacturing as an innovative lightweight material. Nevertheless, the poor weldability of PHS results in poor weld toughness and a high risk of interfacial fracture (IF), posing challenges to the resistance spot welding (RSW) process. Introducing an external magnetic field in the welding process to perform electromagnetic stirring (EMS), the magnetically assisted RSW (MA-RSW) process has been proven an effective method to improve the weld toughness of high-strength steel, but it may increase the risk of expulsion. In response to these challenges, this study introduces a new process called SPMA-RSW to improve the weldability of PHS by combining MA-RSW and the stepped-current pulses (SP) technique, which can enlarge the weld lobe. Nugget appearance, microstructure, microhardness, and mechanical properties were systematically investigated by comparing traditional RSW, MA-RSW, SP-RSW, and SPMA-RSW. The result showed that the SPMA-RSW process would significantly increase the nugget size, inhibit the shrinkage voids, finer the grain size of PHS welds, and harden the nugget region. This increased the lap-shear strength and changed the fracture mode from brittle IF mode to ductile plug fracture (PF) mode at the same heat input. Specifically, the peak load and energy absorption were increased by 32.3% and 84.2%, respectively. Then, an analytical model was developed to reveal the mechanism of the effect of EMS on the fracture mode transition and was verified by experiment. This work can help improve the weld quality and thermal efficiency of the RSW process for PHS.

References

1.
Bai
,
X.
,
Chen
,
G.
,
Li
,
W.
,
Jia
,
R.
,
Xuan
,
L.
,
Zhu
,
A.
, and
Wang
,
J.
,
2021
, “
Critical Speeds of Electric Vehicles for Regenerative Braking
,”
Automot. Innov.
,
4
(
2
), pp.
201
214
.
2.
Zhang
,
Q. K.
,
Long
,
W. M.
,
Yu
,
X. Q.
,
Pei
,
Y. Y.
, and
Qiao
,
P. X.
,
2015
, “
Effects of Ga Addition on Microstructure and Properties of Sn–Ag–Cu/Cu Solder Joints
,”
J. Alloys Compd.
,
622
, pp.
973
978
.
3.
Wang
,
W.
,
Yu
,
S.
,
Cao
,
W.
, and
Guo
,
K.
,
2022
, “
Review of In-Vehicle Optical Fiber Communication Technology
,”
Automot. Innov.
,
5
(
3
), pp.
272
284
.
4.
Lechler
,
J.
, and
Merklein
,
M.
,
2008
, “
Hot Stamping of Ultra High Strength Steels as a Key Technology for Lightweight Construction
,”
Materials Science and Technology 2008 Conference and Exhibition
,
Pittsburgh PA
,
Oct 5–9
, Vol.
12
. pp.
1698
1709
.
5.
Karbasian
,
H.
, and
Tekkaya
,
A. E.
,
2010
, “
A Review on Hot Stamping
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2103
2118
.
6.
Banga
,
H. K.
,
Kalra
,
P.
,
Kumar
,
R.
,
Singh
,
S.
, and
Pruncu
,
C. I.
,
2021
, “
Optimization of the Cycle Time of Robotics Resistance Spot Welding for Automotive Applications
,”
J. Adv. Manuf. Process.
,
3
(
3
), pp.
1
11
.
7.
Chen
,
R.
,
Lou
,
M.
,
Li
,
Y.
, and
Carlson
,
B. E.
,
2019
, “
Improving Weldability of Al-Si Coated Press Hardened Steel Using Stepped Current Pulse Schedule
,”
J. Manuf. Process.
,
48
, pp.
31
43
.
8.
Ji
,
C.-W.
,
Jo
,
I.
,
Lee
,
H.
,
Choi
,
I.-D.
,
do Kim
,
Y.
, and
Park
,
Y.-D.
,
2015
, “
Effects of Surface Coating on Weld Growth of Resistance Spot-Welded Hot-Stamped Boron Steels
,”
J. Mater. Sci. Technol.
,
28
(
11
), pp.
4761
4769
.
9.
Chen
,
R.
,
Lou
,
M.
,
Li
,
Y.
, and
Carlson
,
B. E.
,
2022
, “
A Critical Nugget Size Prediction Model for Al–Si-Coated Press Hardened Steel Resistance Spot Welds
,”
ASME J. Manuf. Sci. Eng.
,
144
(
2
), p.
021004
.
10.
Chen
,
R.
,
Zhang
,
C.
,
Lou
,
M.
,
Li
,
Y.
, and
Carlson
,
B. E.
,
2020
, “
Effect of Al-Si Coating on Weldability of Press-Hardened Steels
,”
J. Mater. Eng. Perform.
,
29
(
1
), pp.
626
636
.
11.
Shen
,
Q.
,
Li
,
Y. B.
,
Lin
,
Z. Q.
, and
Chen
,
G. L.
,
2011
, “
Effect of External Constant Magnetic Field on Weld Nugget of Resistance Spot Welded Dual-Phase Steel DP590
,”
IEEE Trans. Magn.
,
47
(
10
), pp.
4116
4119
.
12.
Shen
,
Q.
,
Li
,
Y.
,
Lin
,
Z.
, and
Chen
,
G.
,
2011
, “
Impact of External Magnetic Field on Weld Quality of Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
133
(
5
), p.
051001
.
13.
Li
,
Y. B.
,
Li
,
Y. T.
,
Shen
,
Q.
, and
Lin
,
Z. Q.
,
2013
, “
Magnetically Assisted Resistance Spot Welding of Dual-Phase Steel
,”
Weld. J.
,
52
(
3
), pp.
493
498
.
14.
Qi
,
L.
,
Li
,
Z.
,
Zhang
,
Q.
,
Wu
,
W.
,
Huang
,
N.
, and
Li
,
Y.
,
2021
, “
Electromagnetic Stirring Control for Resistance Spot Welding of SiCp/Al Composites
,”
J. Manuf. Process.
,
68
, pp.
1271
1279
.
15.
Qi
,
L.
,
Li
,
F.
,
Zhang
,
Q.
,
Xu
,
Y.
,
Han
,
X.
, and
Li
,
Y.
,
2021
, “
Improvement of Single-Sided Resistance Spot Welding of Austenitic Stainless Steel Using Radial Magnetic Field
,”
ASME J. Manuf. Sci. Eng.
,
143
(
3
), p.
031004
.
16.
Qi
,
L.
,
Li
,
F.
,
Chen
,
R.
,
Zhang
,
Q.
, and
Li
,
Y.
,
2020
, “
Improve Resistance Spot Weld Quality of Advanced High Strength Steels Using Bilateral External Magnetic Field
,”
J. Manuf. Process.
,
52
, pp.
270
280
.
17.
Xia
,
Y.-J.
,
Lv
,
T.-L.
,
Li
,
Y.-B.
,
Ghassemi-Armaki
,
H.
, and
Carlson
,
B. E.
,
2023
, “
Quantitative Interpretation of Dynamic Resistance Signal in Resistance Spot Welding
,”
Weld. J.
,
102
(
4
), pp.
69
87
.
18.
Hu
,
S.
,
Haselhuhn
,
A. S.
,
Ma
,
Y.
,
Li
,
Z.
,
Qi
,
L.
,
Li
,
Y.
,
Carlson
,
B. E.
, and
Lin
,
Z.
,
2021
, “
Effect of External Magnetic Field on Resistance Spot Welding of Aluminium to Steel
,”
Sci. Technol. Weld. Join.
,
27
(
2
), pp.
84
91
.
19.
Ma
,
C.
,
Chen
,
D. L.
,
Bhole
,
S. D.
,
Boudreau
,
G.
,
Lee
,
A.
, and
Biro
,
E.
,
2008
, “
Microstructure and Fracture Characteristics of Spot-Welded DP600 Steel
,”
Mater. Sci. Eng. A
,
485
(
1–2
), pp.
334
346
.
20.
Pouranvari
,
M.
, and
Marashi
,
S. P. H.
,
2011
, “
Failure Mode Transition in AHSS Resistance Spot Welds. Part I. Controlling Factors
,”
Mat. Sci. Eng. A-Struct.
,
528
(
29–30
), pp.
8337
8343
.
21.
American Welding Society
,
2012
,
AWS D8.9M-2012 Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials
,
American Welding Society
,
Miami, FL
.
22.
Mohamadizadeh
,
A.
,
Biro
,
E.
,
Worswick
,
M.
,
Zhou
,
N.
,
Malcolm
,
S.
,
Yau
,
C.
,
Jiao
,
Z.
, and
Chan
,
K.
,
2019
, “
Spot Weld Strength Modeling and Processing Maps for Hot-Stamping Steels
,”
Weld. J.
,
98
(
8
), pp.
241
249
.
23.
Mohamadizadeh
,
A.
,
Biro
,
E.
, and
Worswick
,
M.
,
2020
, “
Shear Band Formation at the Fusion Boundary and Failure Behaviour of Resistance Spot Welds in Ultra-High-Strength Hot-Stamped Steel
,”
Sci. Technol. Weld. Join.
,
25
(
7
), pp.
556
563
.
24.
Qi
,
L.
,
Zhang
,
Q.
,
Niu
,
S.
,
Chen
,
R.
, and
Li
,
Y.
,
2021
, “
Influencing Mechanism of an External Magnetic Field on Fluid Flow, Heat Transfer and Microstructure in Aluminum Resistance Spot Welding
,”
Eng. Appl. Comput. Fluid Mech.
,
15
(
1
), pp.
985
1001
.
25.
Pouranvari
,
M.
,
Sobhani
,
S.
, and
Goodarzi
,
F.
,
2018
, “
Resistance Spot Welding of MS1200 Martensitic Advanced High Strength Steel: Microstructure-Properties Relationship
,”
J. Manuf. Process.
,
31
, pp.
867
874
.
26.
Li
,
Y. B.
,
Li
,
D. L.
,
David
,
S. A.
,
Lim
,
Y. C.
, and
Feng
,
Z.
,
2016
, “
Microstructures of Magnetically Assisted Dual-Phase Steel Resistance Spot Welds
,”
Sci. Technol. Weld. Join.
,
21
(
7
), pp.
555
563
.
27.
Sherepenko
,
O.
, and
Jüttner
,
S.
,
2018
, “
Transient Softening at the Fusion Boundary in Resistance Spot Welded Ultra-High Strengths Steel 22MnB5 and its Impact on Fracture Processes
,”
Weld. World
,
63
(
1
), pp.
151
159
.
28.
Sherepenko
,
O.
,
Kazemi
,
O.
,
Rosemann
,
P.
,
Wilke
,
M.
,
Halle
,
T.
, and
Jüttner
,
S.
,
2019
, “
Transient Softening at the Fusion Boundary of Resistance Spot Welds: A Phase Field Simulation and Experimental Investigations for Al–Si-Coated 22MnB5
,”
Metals
,
10
(
1
), p.
10
.
29.
Ighodaro
,
O. L.
,
Biro
,
E.
, and
Zhou
,
Y. N.
,
2016
, “
Comparative Effects of Al-Si and Galvannealed Coatings on the Properties of Resistance Spot Welded Hot Stamping Steel Joints
,”
J. Mater. Process. Technol.
,
236
, pp.
64
72
.
You do not currently have access to this content.