Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Nitrogen cooling has become a popular solution to reduce heat flux between the die and the profile in the hot extrusion process. However, designing effective cooling channels for complex-shape profiles poses challenges, especially when the phase transition of nitrogen significantly impacts heat transfer with solid bodies. To this end, the ability to model both the liquid and the gas phases is instrumental in devising design strategies, yet it should be combined with low computational complexity for industrial applications. The present work is aimed at employing the homogenous-flow approach as a simple, yet representative methodology to consider both phases in the simulations. A one-dimensional model of nitrogen was combined with a three-dimensional extrusion model to perform the transient analysis of the whole process, mostly focused on the transition from fully gaseous to fully liquid flow. Validation using extrusion tests on 17 AA6060 billets demonstrates the model's predictability in comparison with a fully liquid model. The average error associated with the homogeneous flow model was evaluated as below 10%, whereas the fully liquid approach yielded 25%. That proved the ability of the proposed model to reproduce the cooling effect, thus supporting the design of the cooling subsystem within the context of the whole extrusion tooling.

References

1.
Stratton
,
P.
,
2008
, “
Raising Productivity of Aluminium Extrusion With Nitrogen
,”
Int. Heat Treat. Surf. Eng.
,
2
(
3–4
), pp.
105
108
.
2.
Donati
,
L.
,
Segatori
,
A.
,
Reggiani
,
B.
,
Tomesani
,
L.
, and
Fazzini
,
P. A. B.
,
2011
,
Key Engineering Materials
, Vol.
491
,
Trans Tech Publications, Ltd
, pp.
215
222
. www.scientific.net/KEM.491.215
3.
Donati
,
L.
,
Reggiani
,
B.
,
Pelaccia
,
R.
,
Negozio
,
M.
, and
Di Donato
,
S.
,
2022
, “
Advancements in Extrusion and Drawing: A Review of the Contributes by the ESAFORM Community
,”
Int. J. Mater. Form.
,
15
(
3
), p.
41
.
4.
Pelaccia
,
R.
,
Negozio
,
M.
,
Donati
,
L.
,
Reggiani
,
B.
, and
Tomesani
,
L.
,
2022
, “
Extrusion of Light and Ultralight Alloys With Liquid Nitrogen Conformal Cooled Dies: Process Analysis and Simulation
,”
J. Mater. Eng. Perform.
,
31
(
3
), pp.
1991
2001
.
5.
Mainetti
,
E.
,
Bertoletti
,
M.
,
Wallfish
,
S.
, and
Ferrentino
,
A.
,
2012
, “
Significant Extrusion Speed Increase Using Liquid Nitrogen to Eliminate Overheating of Dies During Extrusion Process
,”
Proceedings of ET '12—The Tenth International Aluminum Extrusion Technology Seminar & Exposition
,
Miami, FL
,
May 15–18
.
6.
Ciuffini
,
A. F.
,
Barella
,
S.
,
Di Cecca
,
C.
,
Gruttadauria
,
A.
,
Mapelli
,
C.
,
Merello
,
L.
,
Mainetti
,
G.
, and
Bertoletti
,
M.
,
2018
, “
Surface Quality Improvement of AA6060 Aluminum Extruded Components Through Liquid Nitrogen Mold Cooling
,”
Metals
,
8
(
6
), p.
409
.
7.
Marchese
,
M. A.
, and
Coston
,
J. J.
,
1988
, “
Efficient Use of Liquid Nitrogen for Aluminum Extrusion Die Cooling and Inerting
,”
Proceedings of ET’1988—The Fourth International Aluminum Extrusion Technology Seminar
,
Chicago, IL
,
Apr. 11–14
.
8.
Negozio
,
M.
,
Pelaccia
,
R.
,
Donati
,
L.
, and
Reggiani
,
B.
,
2023
, “
Numerical Investigation of the Surface Recrystallization During the Extrusion of a AA6082 Aluminum Alloy Under Different Process Conditions
,”
Int. J. Adv. Manuf. Technol.
,
129
(
3–4
), pp.
1585
1599
.
9.
Saha
,
P. K.
,
1998
, “
Thermodynamics and Tribology in Aluminum Extrusion
,”
Wear
,
218
(
2
), pp.
179
190
.
10.
Saha
,
P. K.
,
2000
,
Aluminum Extrusion Technology
,
ASM International
,
Materials Park, OH
.
11.
Li
,
L. X.
,
Zhang
,
H.
,
Hu
,
J.
,
Zhou
,
J.
, and
Duczczyk
,
J.
,
2008
, “
Simulation-Based Design of Ram Speed Profile for Isothermal Extrusion
,”
Key. Eng. Mater.
,
367
, pp.
153
160
. www.scientific.net/KEM.367.153
12.
Barella
,
S.
,
Gruttadauria
,
A.
,
Gerosa
,
R.
,
Mainetti
,
G.
, and
Mainetti
,
T.
,
2021
, “
Predictive Tools for In-Line Isothermal Extrusion of 6xxx Aluminum Alloys
,”
Mater. Proc.
,
3
(
1
), p.
24
.
13.
Akhtar
,
S. S.
, and
Arif
,
A. F. M.
,
2010
, “
Fatigue Failure of Extrusion Dies: Effect of Process Parameters and Design Features on Die Life
,”
J. Fail. Anal. Prev.
,
10
(
1
), pp.
38
49
.
14.
Ward
,
T. J.
,
Kelly
,
R. M.
,
Jones
,
G. A.
, and
Heffron
,
J. F.
,
1984
, “
The Effects of Nitrogen—Liquid and Gaseous—on Aluminum Extrusion Productivity
,”
JOM—J. Miner. Met. Mater. Soc.
,
36
(
12
), pp.
29
33
.
15.
Hölker
,
R.
,
Jäger
,
A.
,
Ben Khalifa
,
N.
, and
Erman Tekkaya
,
A.
,
2013
, “
Controlling Heat Balance in Hot Aluminum Extrusion by Additive Manufactured Extrusion Dies With Conformal Cooling Channels
,”
Int. J. Precis. Eng. Manuf.
,
14
(
8
), pp.
1487
1493
.
16.
Hölker
,
R.
, and
Erman Tekkaya
,
A.
,
2016
, “
Advancements in the Manufacturing of Dies for Hot Aluminum Extrusion With Conformal Cooling Channels
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
1209
1220
.
17.
Hussein
,
A. W.
, and
Kadhim
,
A. J.
,
2017
, “
Mathematical Analyses and Numerical Simulations for Forward Extrusion of Circular, Square, and Rhomboidal Sections From Round Billets Through Streamlined Dies
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
064501
.
18.
Ngaile
,
G.
, and
Rodrigues
,
D. S.
,
2021
, “
Die Design Architecture for Enhancing Tool Life Via Manipulation of the Elastic Strain Field of the Dies During Extrusion Processes
,”
ASME J. Manuf. Sci. Eng.
,
143
(
3
), p.
031001
.
19.
Farzad
,
H.
, and
Ebrahimi
,
R.
,
2017
, “
Die Profile Optimization of Rectangular Cross Section Extrusion in Plane Strain Condition Using Upper Bound Analysis Method and Simulated Annealing Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021006
.
20.
Behnagh
,
R. A.
,
Shen
,
N.
,
Ansari
,
M. A.
,
Narvan
,
M.
,
Besharati Givi
,
M. K.
, and
Ding
,
H.
,
2016
, “
Experimental Analysis and Microstructure Modeling of Friction Stir Extrusion of Magnesium Chips
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041008
.
21.
Ben Khalifa
,
N.
,
Foydl
,
A.
,
Pietzka
,
D.
, and
Jäger
,
A.
,
2015
, “
Process Limits of Extrusion of Multimaterial Components
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051001
.
22.
Mazur
,
M.
,
Brincat
,
P.
,
Laery
,
M.
, and
Brandt
,
M.
,
2017
, “
Numerical and Experimental Evaluation of a Conformally Cooled H13 Steel Injection Mould Manufactured With Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
881
900
.
23.
Armillotta
,
A.
,
Baraggi
,
R.
, and
Fasoli
,
S.
,
2014
, “
SLM Tooling for Die Casting With Conformal Cooling Channels
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
573
583
.
24.
Tahri
,
C.
,
Lequien
,
P.
,
Outeiro
,
J. C.
, and
Poulachon
,
G.
,
2017
, “
CFD Simulation and Optimize of LN2 Flow Inside Channels Used for Cryogenic Machining: Application to Milling of Titanium Alloy Ti-6Al-4
,”
Proc. CIRP
,
58
, pp.
584
589
.
25.
Kim
,
W.-Y.
,
Senguttuvan
,
S.
,
Kim
,
S. H.
, and
Lee
,
S.-W.
,
2021
, “
Numerical Study of Flow and Thermal Characteristics in Titanium Alloy Milling With Hybrid Nanofluid Minimum Quantity Lubrication and Cryogenic Nitrogen Cooling
,”
Int. J. Heat. Mass. Transf.
,
170
, p.
121005
.
26.
Husain
,
A.
,
1975
, “
Applicability of the Homogeneous Flow Model to Two-Phase Flow
,”
Ph.D. thesis
,
University of Cincinnati
,
Cincinnati, OH
.
27.
Ungarisch
,
M.
,
1993
,
Hydrodynamics of Suspensions
,
Springer
,
Heidelberg, Germany
.
28.
Pelaccia
,
R.
, and
Santangelo
,
P. E.
,
2022
, “
A Homogeneous Flow Model for Nitrogen Cooling in the Aluminum-Alloy Extrusion Process
,”
Int. J. Heat. Mass. Transf.
,
195
, p.
123202
.
29.
Lemmon
,
E. W.
,
McLinden
,
M. O.
,
Friend
,
D. G.
,
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
2018
, “Thermophysical Properties of Fluid Systems,”
NIST Chemistry WebBook, Standard Reference Database no. 69
,
P. J.
Linstrom
, and
W. G.
Mallard
, eds.,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
30.
Pelaccia
,
R.
,
Reggiani
,
B.
,
Negozio
,
M.
, and
Donati
,
L.
,
2022
, “
Liquid Nitrogen in the Industrial Practice of Hot Aluminum Extrusion: Experimental and Numerical Investigation
,”
Int. J. Adv. Manuf. Technol.
,
119
(
5–6
), pp.
3141
3155
.
31.
Lurie
,
M. V.
,
2008
,
Modeling of Oil Product and Gas Pipeline Transportation
,
Wiley
,
Weinheim, Germany
.
32.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
33.
Fukagata
,
K.
,
Kasagi
,
N.
,
Ua-arayaporn
,
P.
, and
Himeno
,
T.
,
2007
, “
Numerical Simulation of Gas-Liquid Two-Phase Flow and Convective Heat Transfer in a Micro Tube
,”
Int. J. Heat. Fluid Flow.
,
28
(
1
), pp.
72
82
.
34.
Einstein
,
A.
,
1906
, “
Eine neue Bestimmung der Moleküldimensionen
,”
Ann. Phys.
,
324
(
2
), pp.
289
306
.
35.
Bedeaux
,
D.
,
1983
, “
The Effective Shear Viscosity for Two-Phase Flow
,”
Phys. A: Stat. Mech. Appl.
,
121
(
1–2
), pp.
345
361
.
36.
Wang
,
C. Y.
, and
Beckermann
,
C.
,
1993
, “
A Two-Phase Mixture Model of Liquid-Gas Flow and Heat Transfer in Capillary Porous Media—I. Formulation
,”
Int. J. Heat. Mass. Transf.
,
36
(
11
), pp.
2747
2758
.
37.
Giarmas
,
E.
, and
Tzetzis
,
D.
,
2022
, “
Optimization of Die Design for Extrusion of 6xxx Series Aluminum Alloys Through Finite Element Analysis: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
119
(
9–10
), pp.
5529
5551
.
38.
Negozio
,
M.
,
Pelaccia
,
R.
,
Donati
,
L.
, and
Reggiani
,
B.
,
2023
, “
Simulation of the Microstructure Evolution During the Extrusion of Two Industrial-Scale AA6063 Profiles
,”
J. Manuf. Process.
,
99
, pp.
501
512
.
39.
Parvizian
,
F.
,
Kayser
,
T.
,
Hortig
,
C.
, and
Svendsen
,
B.
,
2009
, “
Thermomechanical Modeling and Simulation of Aluminum Alloy Behavior During Extrusion and Cooling
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
876
883
.
40.
Nourani
,
M.
,
Milani
,
A. S.
, and
Yannacopoulos
,
S.
,
2014
, “
On the Effect of Different Material Constitutive Equations in Modeling Friction Stir Welding: A Review and Comparative Study on Aluminum 6061
,”
Int. J. Adv. Eng. Technol.
,
7
, pp.
1
20
.
41.
Verlinden
,
B.
,
Suhadi
,
A.
, and
Delaey
,
L.
,
1993
, “
A Generalized Constitutive Equation for an AA6060 Aluminum Alloy
,”
Scr. Metall. Mater.
,
28
(
11
), pp.
1441
1446
.
You do not currently have access to this content.