Abstract

The increasing demand for higher precision in complex surface forming has highlighted the significance of utilizing variable blank holding force (VBHF) in segmented blank holding. However, applying electromagnetic blank holding in such segmented systems remains unexplored, presenting a critical challenge in continuous forming processes. This study proposed an innovative, flexible tooling system driven by an electrically controlled permanent magnet, enabling discrete control of blank holders. An equivalent magnetic circuit for a single magnetic pole was developed alongside a model to characterize variations in electromagnetic force. The discrete VBHF control with a short-time pulse leverages the operating point migration law of the magnet, elucidating the control mechanism of discrete electromagnetic forces. An electrical-magnetic-mechanical coupling simulation model was established using Simulink, Simplorer, and Maxwell. The simulation results reveal that the control error of electromagnetic force across different blank holding areas under varying currents ranges from 0.1% to 1.7%, with a steady-state control error under any electromagnetic force curve remaining within 5%. Electromagnetic blank holding experiments on a car-door prototype demonstrated that the control error of discrete electromagnetic forces is between −50 N and 20 N. Applying short-time pulse current in VBHF loading also ensures forming quality while reducing continuous current consumption by 14.03% and decreasing hydraulic press tonnage demand by 14%. This study provides theoretical and methodological support for designing equipment that enables low-tonnage, high-precision continuous forming of complex surfaces.

References

1.
Cao
,
J.
, and
Banu
,
M.
,
2020
, “
Opportunities and Challenges in Metal Forming for Lightweighting: Review and Future Work
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110813
.
2.
Xiao
,
W.
,
Wang
,
B.
,
Kang
,
Y.
,
Ma
,
W.
, and
Tang
,
X.
,
2017
, “
Deep Drawing of Aluminum Alloy 7075 Using Hot Stamping
,”
Rare Met.
,
36
(
6
), pp.
485
493
.
3.
Endelt
,
B.
,
Tommerup
,
S.
, and
Danckert
,
J.
,
2013
, “
A Novel Feedback Control System—Controlling the Material Flow in Deep Drawing Using Distributed Blank-Holder Force
,”
J. Mater. Process. Technol.
,
213
(
1
), pp.
36
50
.
4.
Jia
,
X.
,
Zhao
,
C.
,
He
,
L.
,
Li
,
J.
,
Cao
,
M.
, and
Mo
,
C.
,
2017
, “
Analytic Methods of Flange Deformation Region in Axisymmetrical Drawing Process
,”
J. Mech. Eng.
,
53
(
8
), p.
50
.
5.
Liu
,
Y.
,
Li
,
M.
, and
Ju
,
F.
,
2016
, “
Research on the Process of Flexible Blank Holder in Multi-Point Forming for Spherical Surface Parts
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
2315
2322
.
6.
Siegert
,
K.
,
Wagner
,
S.
, and
Ziegler
,
M.
,
1996
, “
Closed Loop Binder Force System
,” SAE Technical Paper.
7.
Siegert
,
K.
,
Ziegler
,
M.
, and
Wagner
,
S.
,
1997
, “
Closed Loop Control of the Friction Force. Deep Drawing Process
,”
J. Mater. Process. Technol.
,
71
(
1
), pp.
126
133
.
8.
Tian
,
S.
,
Feng
,
Y.
, and
Gao
,
Y.
,
2015
, “
Design and Application of a Novel Cone-Shaped Blank Holder for Precision Stamping Process
,”
Procedia CIRP
,
27
, pp.
309
312
.
9.
Mao
,
Y.
,
Kong
,
X.
,
Li
,
X.
,
Yang
,
L.
,
Wang
,
N.
, and
Qin
,
S.
,
2018
, “
Deep Draing of Square Cup With Hybrid Segment-Blank-Holder Technique
,”
J. Netshape Form. Eng.
,
10
(
06
), pp.
57
64
.
10.
Tran
,
M. T.
,
Shan
,
Z.
,
Lee
,
H. W.
, and
Kim
,
D. K.
,
2021
, “
Earing Reduction by Varying Blank Holding Force in Deep Drawing With Deep Neural Network
,”
Metals
,
11
(
3
), p.
395
.
11.
Liu
,
Z.
,
Xiong
,
B.
,
Li
,
X.
,
Yan
,
L.
,
Li
,
Z.
,
Zhang
,
Y.
, and
Liu
,
H.
,
2019
, “
Deep Drawing of 6A16 Aluminum Alloy for Automobile Body With Various Blank-Holder Forces
,”
Rare Met.
,
38
(
10
), pp.
946
953
.
12.
Su
,
C.
,
Zhang
,
K.
,
Lou
,
S.
,
Xu
,
T.
, and
Wang
,
Q.
,
2017
, “
Effects of Variable Blank Holder Forces and a Controllable Drawbead on the Springback of Shallow-Drawn TA2M Titanium Alloy Boxes
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5
), pp.
1627
1635
.
13.
Feng
,
Y.
,
Hong
,
Z.
,
Gao
,
Y.
,
Lu
,
R.
,
Wang
,
Y.
, and
Tan
,
J.
,
2019
, “
Optimization of Variable Blank Holder Force in Deep Drawing Based on Support Vector Regression Model and Trust Region
,”
Int. J. Adv. Manuf. Technol.
,
105
(
10
), pp.
4265
4278
.
14.
Liu
,
W.
,
An
,
L.
, and
Yuan
,
S.
,
2017
, “
Enhancement on Deformation Uniformity of Double Curvature Shell by Hydroforming Process and Curved Blank-Holder Surface
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5
), pp.
1913
1922
.
15.
Cao
,
J.
,
Brinksmeier
,
E.
,
Fu
,
M.
,
Gao
,
R. X.
,
Liang
,
B.
,
Merklein
,
M.
,
Schmidt
,
M.
, and
Yanagimoto
,
J.
,
2019
, “
Manufacturing of Advanced Smart Tooling for Metal Forming
,”
CIRP Ann.
,
68
(
2
), pp.
605
628
.
16.
Neugebauer
,
R.
,
Mainda
,
P.
,
Kerschner
,
M.
,
Drossel
,
W. G.
, and
Roscher
,
H. J.
,
2011
, “
Integrated Piezoelectric Actuators in Deep Drawing Tools to Reduce the Try-Out
,”
AIP Conf. Proc.
,
1353
(
1
), pp.
189
194
.
17.
Neugebauer
,
R.
,
Mainda
,
P.
,
Drossel
,
W.-G.
,
Kerschner
,
M.
, and
Wolf
,
K.
,
2011
, “
Integrated Piezoelectric Actuators in Deep Drawing Tools
,”
Proceedings of the Industrial and Commercial Applications of Smart Structures Technologies 2011
,
San Diego, CA
,
Apr. 28
.
18.
Sato
,
H.
,
Manabe
,
K.
,
Ito
,
K.
,
Wei
,
D.
, and
Jiang
,
Z.
,
2015
, “
Development of Servo-Type Micro-Hydromechanical Deep-Drawing Apparatus and Micro Deep-Drawing Experiments of Circular Cups
,”
J. Mater. Process. Technol.
,
224
, pp.
233
239
.
19.
Fallahiarezoodar
,
A.
,
Gupta
,
T.
,
Goertemiller
,
C.
, and
Altan
,
T.
,
2019
, “
Residual Stresses and Springback Reduction in U-Channel Drawing of Al5182-O by Using a Servo Press and a Servo Hydraulic Cushion
,”
Prod. Eng.
,
13
(
2
), pp.
219
226
.
20.
Modi
,
B.
, and
Kumar
,
D. R.
,
2019
, “
Optimization of Process Parameters to Enhance Formability of AA 5182 Alloy in Deep Drawing of Square Cups by Hydroforming
,”
J. Mech. Sci. Technol.
,
33
(
11
), pp.
5337
5346
.
21.
Zheng
,
L.-H.
,
Wang
,
Z.-J.
,
Liu
,
Z.-G.
, and
Song
,
H.
,
2018
, “
Formability and Performance of 6K21-T4 Aluminum Automobile Panels in VPF Under Variable Blank Holder Force
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1–4
), pp.
571
584
.
22.
Huang
,
H.
,
Lv
,
Q.
,
Li
,
L.
,
Xu
,
Y.
,
Liu
,
C.
,
Zhang
,
T.
, and
Liu
,
Z.
,
2023
, “
Individually Segmented Blank Holding System Driven by Electromagnetics for Stamping: Modeling, Validation, and Prototype
,”
J. Mater. Process. Technol.
,
313
, p.
117883
.
23.
Huang
,
H.
,
Sang
,
H.
,
Li
,
L.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Liu
,
Z.
,
2023
, “
High-Accuracy Control of Variable Blank Holding Force Driven by Electromagnetics Based on Pulse Width Modulation With Grading Voltage and Mode Matching
,”
J. Mater. Process. Technol.
,
322
, p.
118210
.
24.
Fan
,
S.
,
Mo
,
J.
,
Fang
,
J.
, and
Xie
,
J.
,
2017
, “
Electromagnetic Pulse-Assisted Incremental Drawing Forming of Aluminum Alloy Cylindrical Part and Its Control Strategy
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2681
2690
.
25.
Huang
,
Y.
,
Lai
,
Z.
,
Cao
,
Q.
,
Han
,
X.
,
Liu
,
N.
,
Li
,
X.
,
Chen
,
M.
, and
Li
,
L.
,
2019
, “
Controllable Pulsed Electromagnetic Blank Holder Method for Electromagnetic Sheet Metal Forming
,”
Int. J. Adv. Manuf. Technol.
,
103
(
9–12
), pp.
4507
4517
.
26.
Li
,
H.
,
Wang
,
Q.
,
He
,
F.
,
Zheng
,
Y.
, and
Sun
,
Y.
,
2019
, “
Design, Numerical Simulation, and Experimental Validation of a Novel Electromagnetic Blank Holding System for Conventional Drawing Process
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
2183
2193
.
27.
Briesenick
,
D.
, and
Liewald
,
M.
,
2024
, “
Efficient Net Shape Forming of High-Strength Sheet Metal Parts by Transversal Compression Drawing
,”
Int. J. Adv. Manuf. Technol.
,
130
(
5
), pp.
3053
3063
.
28.
Du
,
L.
,
Xia
,
L.
,
Li
,
X.
,
Qiu
,
L.
,
Lai
,
Z.
,
Chen
,
Q.
,
Cao
,
Q.
,
Han
,
X.
, and
Li
,
L.
,
2021
, “
Adjustable Current Waveform via Altering the Damping Coefficient: A New Way to Reduce Joule Heating in Electromagnetic Forming Coils
,”
J. Mater. Process. Technol.
,
293
, p.
117086
.
29.
Yu
,
P.
,
Tan
,
C.
,
Yan
,
H.
,
Ge
,
W.
,
Sun
,
Z.
, and
Chen
,
X.
,
2023
, “
Nonlinear Electromagnetic Force Analysis and Compensation Control of Electromagnetic Linear Actuator
,”
Phys. Scr.
,
98
(
10
), p.
105507
.
30.
Tang
,
L.
,
Chen
,
W.
, and
Xu
,
Z.
,
2022
, “
A Direct Electromagnetic Force Closed-Loop Control Strategy for a Contactor
,”
IEEE Trans. Ind. Electron.
,
70
(
2
), pp.
1740
1750
.
31.
Qin
,
S.
,
Zhang
,
H.
,
Mao
,
Y.
,
Yang
,
L.
,
Li
,
X.
,
Hu
,
Z.
, and
Cheng
,
X.
,
2020
, “
Electropermanent Magnet Blank Holder Technique in Sheet Metal Deep Drawing
,”
Int. J. Adv. Manuf. Technol.
,
106
(
11–12
), pp.
5497
5507
.
32.
Zhang
,
H.
,
Qin
,
S.
,
Cao
,
L.
,
Meng
,
L.
,
Zhang
,
Q.
, and
Li
,
C.
,
2020
, “
Research on Deep Drawing Process Using Radial Segmental Blank Holder Based on Electro-Permanent Magnet Technology
,”
J. Manuf. Processes
,
59
, pp.
636
648
.
33.
Qin
,
S.
,
Cheng
,
X.
,
Zhang
,
H.
,
Lu
,
T.
,
Gu
,
T.
, and
Meng
,
L.
,
2020
, “
Analyses of Thermal Field and Coupled Magnetic-Mechanical Field in Electro-Permanent Magnet Blank Holder Technique
,”
Int. J. Adv. Manuf. Technol.
,
110
(
1–2
), pp.
499
510
.
34.
Zhang
,
H.
, and
Qin
,
S.
,
2022
, “
A Novel Process of Deep Drawing Based on Electro-Permanent Magnet Combined Segmental Blank Holder Technique
,”
Int. J. Adv. Manuf. Technol.
,
118
(
11–12
), pp.
3883
3896
.
35.
Li
,
L.
,
Deng
,
Y.
,
Wang
,
Y.
,
Cao
,
D.
,
Hu
,
G.
, and
Huang
,
H.
,
2024
, “
Discretized Blank Holding Force Driven by Electromagnetics: Mechanism of Thermal Effects and Deformation
,”
J. Mater. Process. Technol.
,
331
, p.
118493
.
You do not currently have access to this content.