Failure conditions are assessed when ceramics exhibit Subcritical Crack Growth from preexisting flaws. In the framework of the weakest link theory and independent events hypothesis, a reliability analysis is carried out by modeling flaw distributions and crack growth laws. Experimental data obtained on a spinel Mn Zn ferrite subjected to five different load rates are analyzed by using an expression for the failure probability accounting for Subcritical Crack Growth.
Issue Section:
Technical Papers
1.
Amestoy
M.
Bui
H. D.
Dang-Van
K.
1979
, “De´viation infinite´simale d’une fissure dans une direction arbitraire
,” C. R. Acad. Sci. Paris
, Vol. B t. 289
, pp. 99
–103
.2.
Aoki
S.
Sakata
M.
1980
, “Statistical Approach to Delayed Fracture of Brittle Materials
,” Int. J. Fract.
, Vol. 16
, pp. 459
–469
.3.
Aoki
S.
Ohta
I.
Ohnabe
H.
Sakata
M.
1983
, “Statistical Approach to Time-Dependent Failure of Brittle Materials
,” Int. J. Fract.
, Vol. 21
, pp. 285
–300
.4.
Batdorf
S. B.
Crose
J. G.
1974
, “A Statistical Theory for the Fracture of Brittle Structures Subjected to Polyaxial Stress States
,” ASME Journal of Applied Mechanics
, Vol. 41
, pp. 459
–465
.5.
Bilby
B. A.
Cardew
G. E.
1975
, “The Crack with a Kinked Tip
,” Int. J. Fract.
, Vol. 11
, pp. 708
–712
.6.
Brinkman, C. R., and S. F. Duffy, 1994, “Life Prediction Methodologies and Data for Ceramic Materials (STP 1201),” ASTM, Philadelphia., PA.
7.
Davidge
R. W.
McLaren
J. R.
Tappin
G.
1973
, “Strength-Probability-Time (SPT) Relationship in Ceramics
,” J. Mat. Sec.
, Vol. 8
, pp. 1699
–1705
.8.
Evans
A. G.
1972
, “A Method for Evaluating the Time-Dependent Failure Characteristics of Brittle Materials—and its Application to Polycrystalline Alumina
,” J. Mat. Sci.
, Vol. 7
, pp. 1137
–1146
.9.
Evans
A. G.
Wiederhorn
S. M.
1974
, “Crack Propagation and Failure Prediction in Silicon Nitride at Elavated Temperature
,” J. Mat. Sci.
, Vol. 9
, pp. 270
–278
.10.
Evans
A. G.
1978
, “A General Approach for the Statistical Analysis of Multiaxial Fracture
,” J. Am. Ceram. Soc.
, Vol. 61
, pp. 302
–308
.11.
Freudenthal, A. M., 1968, Statistical Approach to Brittle Fracture, in Fracture (Liebowitz, H., ed.) Academic Press, Vol. 2 pp. 591–619.
12.
Hild
F.
Roux
S.
1991
, “Fatigue Initiation in Heterogeneous Brittle Materials
,” Mech. Res. Comm.
, Vol. 18
, pp. 409
–414
.13.
Hild
F.
Marquis
D.
1992
, “A Statistical Approach to the Rupture of Brittle Materials
,” Eur. J. Mech., A/Solids
, Vol. 11
, pp. 753
–765
.14.
Hild
F.
Marquis
D.
1995
, “Fiabilite´ de mate´riaux avec de´fauts en propagation stable
,” C. R. Acad. Sci. Paris
, Vol. IIb
t. 320, pp. 57
–62
.15.
Jayatilaka
A. D. S.
Trustrum
K.
1977
, “Statistical Approach to Brittle Fracture
,” J. Mat. Sci.
, Vol. 12
, pp. 1426
–1430
.16.
Kadouch, O., 1993, “Rupture diffe´re´e sous sollicitations me´caniques des ferrites spinelles NiZn et MnZn,” PhD dissertation, E´cole Nationale Supe´ricure des Mines de Paris.
17.
Kingery, W. D., H. K. Bowen, and D. R. Uhlmann, 1976, Introduction to Ceramics, Wiley, NY.
18.
Lamon
J.
Evans
A. G.
1983
, “Statistical Analysis of Bending Strengths for Brittle Solids: a Multiaxial Fracture Problem
,” J. Am. Ceram. Soc.
, Vol. 66
, pp. 177
–182
.19.
Lamon
J.
1988
, “Statistical Approaches to Failure for Ceramic Reliability Assement
,” J. Am. Ceram. Soc.
, Vol. 71
, pp. 106
–112
.20.
Lemaitre
J.
1976
, “Extension de la notion de taux d’e´nergie de fissuration aux proble`mes tridimensionnels et non line´aires
,” C. R. Acad. Sci. Paris
, Vol. B
t. 282, pp. 157
–160
.21.
Weibull, W., 1939, “A Statistical Theory of the Strength of Materials,” Roy. Swed. Inst. Eng. Res., 151.
22.
Wu
C.-H.
1978
, “Fracture under Combined Loads by Maximum-Energy-Release-Rate Criterion
,” ASME Journal of Applied Mechanics
, Vol. 45
, pp. 553
–558
.
This content is only available via PDF.
Copyright © 1996
by The American Society of Mechanical Engineers
You do not currently have access to this content.