The purpose of this paper is to investigate the effect of material heterogeneity on damage evolution and subsequent crack propagation in bimaterial systems. Strain gradient theory analysis reveals that a higher stress triaxiality always occurs on the softer material side due to the material mismatch in yield capacity and the corresponding strain gradient along the interface. High stress triaxiality is a major condition which promotes ductile damage and facilitates crack growth. To investigate this link, numerical simulations of ductile interface crack growth are performed using a damage based constitutive model. Both the numerical and experimental results show that a crack may grow along the interface or deviate into the softer material, but never turn into the harder material. The theoretical and numerical analysis reveal three factors which strongly affect the direction of crack growth and the resistance capacity of the bimaterial system against fracture. These are the boundary conditions which determine the global kinematically admissible displacement field, the stress/strain gradient near the interface due to the material mismatch, and the distance from the crack tip to the interface.

1.
Belytschko
T.
,
Lu
Y. Y.
, and
Gu
L.
,
1994
, “
A new implementation of the element free Galerkin method
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
113
, pp.
397
414
.
2.
Chen
J. S.
,
Pan
C.
, and
Liu
W. K.
,
1996
, “
Reproducing kernel particle methods for large deformation analysis of nonlinear structures
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
139
, pp.
195
228
.
3.
Chu
C. C.
, and
Needleman
A.
,
1980
, “
Void nucleation effects in biaxially strached sheets
,”
J. of Engineering Material and Technology
, Vol.
102
, pp.
249
256
.
4.
Evans
A. G.
, and
Dalgleish
B. J.
,
1990
, “
The fracture resistance of metal-ceramic interfaces
,”
Acta Met. Mater.
, Vol.
40
, pp.
S295–S306
S295–S306
.
5.
Fleck
N. A.
, and
Hutchinson
J. W.
,
1993
, “
A phenomenological theory for strain gradient effects in plasticity
,”
J. of Mechanics and Physics of Solids
, Vol.
41
, pp.
1825
1857
.
6.
Fleck, N. A., and J. W. Hutchinson, 1997, Strain gradient theory, Advances in Applied Mechanics, ed. J. W. Hutchinson and T. Y. Wu, Vol. 33, pp. 295–361.
7.
Gao, H., Y. Huang, W. D. Nix, and J. W. Hutchinson, 1998, “Mechanism-based strain gradient plasticity: I theory,” In preparation.
8.
Hao, S., W. Brocks, M. Kocak, and K.-H. Schwalbe, 1996, Simulation of the ductile crack growth on interface (fusion line), 2nd Int. Symp. on Mismatch, Reinstoff, Germany.
9.
Hao, S., W. K. Liu, and C. T. Chang, 1999, “Computation implementation of damage models by finite elements and mechfree methods” (accepted and to be appeared in) Computer Methods in Applied Mechanics and Engineering.
10.
Hill
R.
,
1963
,
J. of Mechanics and Physics of Solids
, Vol.
11
, p.
357
357
.
11.
Huang, Y., H. Gao, W. D. Nix, and J. W. Hutchinson, 1998, “Mechanism-based strain gradient plasticity: II analysis,” In preparation.
12.
Hutchinson
J. W.
,
Mear
M.
, and
Rice
J. R.
,
1987
, “
Crack paralleling an interface between dissimilar media
,”
ASME Journal of Applied Mechanics
, Vol.
54
, pp.
828
832
.
13.
Jun
S.
,
Liu
W. K.
, and
Belytschko
T.
,
1998
, “
Explicit reproducing kernel particle methods for large deformation problems
,”
International J. for Numerical Methods in Engineering
, Vol.
41
, pp.
137
166
.
14.
Liu
W. K.
, and
Chen
Y.
,
1995
, “
Wavelet and multiple scale reproducing kernel methods
,”
International J. for Numerical Methods in Fluids
, Vol.
21
, pp.
901
931
.
15.
Liu
W. K.
,
Chen
Y.
,
Chang
C. T.
, and
Belytschko
T.
,
1996
, “
Advances in multiple scale kernel particle methods
,” A Special Feature Article for the 10th Anniversary Volume of
Computational Mechanics
, Vol.
18
(
2
), pp.
73
111
.
16.
Liu
W. K.
,
Chen
Y.
,
Uras
R. A.
, and
Chang
C. T.
,
1996
, “
Generalized multiple scale reproducing kernel particle methods
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
139
, pp.
91
158
.
17.
Liu
W. K.
,
Guo
Y.
,
Tang
S.
, and
Belytschko
T.
,
1997
, “
A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
154
, (1998), pp.
69
132
.
18.
Liu
W. K.
,
Hao
W.
,
Chen
Y.
,
Jun
S.
, and
Gosz
J.
,
1997
, “
Multiresolution reproducing kernel particle methods
,”
Computational Mechanics
, Vol.
20
(
4
), pp.
295
309
.
19.
Liu
W. K.
,
Hu
Y. K.
, and
Belytschko
T.
,
1994
, “
Multiple quadraturem underintegrated finite elements
,”
International J. for Numerical Methods for Engineering
, Vol.
37
, pp.
3263
3289
.
20.
Liu
W. K.
, and
Jun
S.
,
1998
, “
Multiple scale reproducing kernel particle methods for large deformation problems
,”
International J. for Numerical Methods for Engineering
, Vol.
41
, pp.
1339
1362
.
21.
Liu
W. K.
,
Jun
S.
,
Li
S.
,
Adee
J.
, and
Belytschko
T.
,
1995
, “
Reproducing kernel particle methods for structural dynamics
,”
International J. for Numerical Methods for Engineering
, Vol.
38
, pp.
1655
1679
.
22.
Liu
W. K.
,
Jun
S.
, and
Zhang
Y. F.
,
1995
, “
Reproducing kernel particle methods
,”
International Journal for Numerical Methods in Fluids
, Vol.
20
, pp.
1081
1106
.
23.
Liu
W. K.
,
Uras
R. A.
, and
Chen
Y.
,
1998
, “
Enrichment of the finite element method with the reproducing kernel particle method
,”
ASME J. of Applied Mechanics
, Vol.
64
, pp.
861
870
.
24.
Liu
W. K.
,
Uras
A.
, J. S. O.,
1985
, “
Finite element stabilization matrices—a unification approach
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
53
, pp.
13
46
.
25.
Needleman
A.
, and
Tvergaard
V.
,
1987
, “
An analysis of ductile rupture modes at a crack tip
,”
J. of Mechanics and Physics of Solids
, Vol.
35
, pp.
151
183
.
26.
Petrovski, B., and M. Kocak, 1993, “Evaluation of the fracture behaviour of strength mis-matched steel weld joints with surface cracked tensile panels and senb specimens,” Mis-Matching of Weld, ed., K.-H. Schwalbe and M. Kocak, pp. 511–537.
27.
Reimanis
I. E.
, e. a.,
1990
, “
Effects of plasticity on the crack propergation resistance of a metal/ceramic interface
,”
International J. of Fracture
, Vol.
38
, pp.
2645
2652
.
28.
Rice
J. R.
,
1988
, “
Elastic fracture mechanics concepts for interfacial cracks
,”
ASME J. of Applied Mechanics
, Vol.
55
, pp.
418
423
.
29.
Rice
J. R.
, and
Tracey
D. M.
,
1969
, “
On the ductile enlargement of voids in triaxial stress field
,”
J. Mech. Phys. Solids
, Vol.
17
, pp.
2
15
.
30.
Shih
C. F.
, and
Asaro
R. J.
,
1991
, “
Elastic-plastic analysis of cracks on bi-material interfaces: Part III—large sacle yielding
,”
ASME J. of Applied Mechanics
, Vol.
58
, pp.
450
463
.
31.
Williams
M. L.
,
1959
, “
The stresses around a fault or crack in dissimilar media
,”
Bulletin of the Seismological Society of America
, Vol.
49
, pp.
199
204
.
32.
Xu
X. -P.
, and
Needleman
A.
,
1995
, “
Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line
,”
Int. J. of Fracture
, Vol.
74
, pp.
253
275
.
33.
Zywicz
E.
, and
Parks
D. M.
,
1992
, “
Small-scale yielding interfacial crack tip fields
,”
J. Mech. Phys. Solids
, Vol.
40
, pp.
511
536
.
This content is only available via PDF.
You do not currently have access to this content.