Low cycle fatigue (LCF) of unidirectional glass/epoxy composite laminates is investigated. LCF conditions involve high loads that may reach up to 90 percent of the material ultimate strength. LCF has unique features that require some modifications to the existing fatigue models and engineering S-N curves. LCF characterization of polymer matrix composites (PMCs) is carried out to determine unique characteristics of the S-N curves corresponding to distinct loading conditions (e.g., stress ratios). LCF behavior of the PMCs studied is characterized by finite strains (1–3 percent), finite strain rates (0.05–10 s−1), and high property degradation rates, which are higher than those seen during high cycle fatigue of the glass/epoxy laminates. [S0094-4289(00)02504-4]

1.
Talreja, R., 1987, Fatigue of Composite Materials, Technomic, Lancaster, PA.
2.
Reifsnider, K. L., ed., 1991, Fatigue of Composite Materials, Comp. Mat. Series, Vol. 4, Elsevier, London.
3.
Harik, V. M., Fink, B. K., Bogetti, T. A., Klinger, J. R., and Gillespie, J. W., Jr., 2000, Low Cycle Fatigue of Composite Structures in Army Applications: A Review of Literature and Recommendations for Research, ARL-TR-2242 on ARL LCF Program, U.S. Army Research Laboratory, Aberdeen, MD.
4.
Rie, K.-T., and Portella, P. D., eds., 1998, Low Cycle Fatigue and Elasto-Plastic Behavior of Materials, Elsevier, Oxford.
5.
Picasso, B., and Priolo, P., 1988, “Damage assessment and life prediction for graphite-PEEK quasi-isotropic composites,” PVP-Vol. 146, pp. 183–188, Pressure Vessels and Piping Division of ASME, American Society of Mechanical Engineers, New York.
6.
Simonds, R. A., and Stinchcomb, W. W., 1989, “Response of notched AS4/PEEK laminates to tension/compression loading,” Advance in Thermoplastic Matrix Composite Materials, ASTM STP 1044, G. M. Newaz, ed., pp. 133–145, American Society for Testing and Materials, Philadelphia.
7.
Case., S. W., and Reifsnider, K. L., 1998, MRLifell™: “A Strength and Life Prediction Code for Laminated Composite Materials,” Virginia Polytechnic Institute and State University, Blacksburg.
8.
Uleck, K. R., Harris, J. S., and Vizzini, A. J., 1998, “Effect of temperature on the fatigue life of a quasi-isotropic graphite/epoxy laminate,” Proc. 13th Tech. Conf. ASC, Baltimore, September 21–24.
9.
Chaphalkar, P., 1998, “Performance evaluation and modeling of twill woven laminates,” Ph.D. thesis, North Carolina A&T State University.
10.
Harik, V. M., Klinger, J. R., Fink, B. K., Bogetti, T. A., Paesano, A., and Gillespie, J. W., Jr., 1999, “Low Cycle Fatigue of Unidirectional Glass/Epoxy Composite,” Durability and Damage Tolerance of Composite Materials and Structures, MD-Vol. 86/AMD-Vol. 232, Pelegri, A. A., et al., ed., pp. 79–86, American Society of Mechanical Engineers, New York, NY.
11.
Mandell
,
J. F.
,
Huang
,
D. D.
, and
McGarry
,
F. J.
,
1981
, “
Tensile fatigue performance of glass fiber dominated composites
,”
Comp. Tech. Rev.
,
3
, No.
3
, pp.
96
102
.
12.
Gamstedt
,
E. K.
, and
Talreja
,
R.
,
1999
, “
Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics
,”
J. Mater. Sci.
,
34
, No.
11
, pp.
2535
2546
.
13.
Owen, M. J., 1974, “Fatigue damage in glass-fiber-reinforced plastics,” in Composite Materials 5. Fracture and Fatigue, Boutman, L. J., ed., Chapter 7, Academic Press, New York.
14.
Lorenzo, L., and Hahn, H. T., 1986, “Fatigue failure mechanisms in unidirectional composites,” Composite Materials: Fatigue and Fracture, ASTM STP 907, Hahn H. T., ed., Philadelphia, pp. 210–232.
15.
Subramanian
,
S.
,
Reifsnider
,
K. L.
, and
Stinchcomb
,
W. W.
,
1995
, “
A cumulative damage model to predict the fatigue life of composite laminates including the effect of a fibre-matrix interphase
,”
Int. J. Fatigue
,
17
, No.
5
, pp.
343
351
.
You do not currently have access to this content.