We present a framework coupling continuum elasto-viscoplasticity with three-dimensional discrete dislocation dynamics. In this approach, the elastic response is governed by the classical Hooke’s law and the viscoplastic behavior is determined by the motion of curved dislocations in a three-dimensional space. The resulting hybrid continuum-discrete framework is formulated into a standard finite element model where the dislocation-induced stress is homogenized over each element with a similar treatment for the dislocation-induced plastic strain. The model can be used to investigate a wide range of small scale plasticity phenomena, including microshear bands, adiabatic shear bands, stability and formation of dislocation cells, thin films and multiplayer structures. Here we present results pertaining to the formation of deformation bands and surface distortions under dynamic loading conditions and show the capability of the model in analyzing complicated deformation-induced patterns.

1.
Essmann
,
U.
,
1969
, “
Elektronenmikroskopische Untersuchung der Versetzungsanordnung. Plastisch Verformten Kupfereinkristallen
,”
Acta Metall.
,
12
, pp.
1468
1470
.
2.
Essmann
,
U.
, and
Mughrabi
,
H.
,
1979
, “
Annihilation of Dislocations during Tensile and Cyclic Deformation of Limits of Dislocation Densities
,”
Philos. Mag. A
,
40
(
6
), pp.
731
756
.
3.
Kamat
,
S. V.
, and
Hirth
,
J. P.
,
1990
, “
Dislocation injection in strained multilayer structures
,”
J. Appl. Phys.
,
67
(
11
), p.
6844
6844
.
4.
Rhee
,
M.
,
Hirth
,
J. P.
, and
Zbib
,
H. M.
,
1994
, “
On the Bowed Out Tilt Wall Model of Flow Stress and Size Effects in Metal Matrix Composites
,”
Acta Metall. Mater.
,
31
, pp.
1321
1324
.
5.
Lambros
,
J.
, and
Rosakis
,
A. J.
,
1995
, “
Development of a Dynamic Decohesion Criterion for Subsonic Fracture of the Interface between Two Dissimilar Materials
,” SM Report 95-3, Cal. Tech.
6.
Canova, G. R., Brechet, Y., and Kubin, L. P., 1992, “3D Dislocation Simulation of Plastic Instabilities by Work? Softening in Alloys,” Modelling of Plastic Deformation and Its Engineering Applications, S. I. Anderson et al., eds., Riso National Laboratory, Roskilde, Denmark.
7.
Kubin
,
L. P.
,
Canova
,
G.
,
Condat
,
M.
,
Devincre
,
B.
,
Pontikis
,
V.
, and
Brechet
,
Y.
,
1992
, “
Dislocation Microstructures in Two Dimensions: I. Relaxed Structures, Modelling Simulation
,”
Mater. Sci. Eng.
,
1
, pp.
1
17
.
8.
Zbib
,
H. M.
,
Rhee
,
M.
, and
Hirth
,
J. P.
,
1998
, “
On Plastic Deformation and the Dynamics of 3D Dislocations
,”
Int. J. Mech. Sci.
,
40
, pp.
113
127
.
9.
Zbib
,
H. M.
,
Rhee
,
M.
,
Hirth
,
J. P.
, and
de La Rubia
,
T. D.
,
2000
, “
A 3D Dislocation Simulation Model for Plastic Deformation and Instabilities in Single Crystals
,”
J. Mech. Behav. Mater.
,
11
, p.
251
255
.
10.
Rhee
,
M.
,
Stolken
,
J.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
, and
Diaz de la Rubia
,
T.
,
2001
, “
Dislocation Dynamics Using Anisotropic Elasticity: Methodology and Analysis
,”
Mater. Sci. Eng., A
A309-310
, pp.
288
293
.
11.
Rhee
,
M.
,
Hirth
,
J. P.
, and
Zbib
,
H. M.
,
1994
, “
On the Bowed Out Tilt Wall Model of Flow Stress and Size Effects in Metal Matrix Composites
,”
Scr. Metall. Mater.
,
31
, pp.
1321
1324
.
12.
Hirth
,
J. P.
,
Rhee
,
M.
, and
Zbib
,
H. M.
,
1996
, “
Modeling of Deformation by a 3D Simulation of Multipole, Curved Dislocations
,”
J. Computer-Aided Materials Design
,
3
, pp.
164
166
.
13.
Ghoniem
,
N. M.
, and
Sun
,
L.
,
1999
, “
A Fast Sum Method for the Elastic Field of 3-D Dislocation Ensembles
,”
Phys. Rev. B
,
60
, pp.
128
140
.
14.
Kubin
,
L. P.
,
1993
, “
Dislocation Patterning During Multiple Slip of FCC Crystals
,”
Phys. Status Solidi A
,
135
, pp.
433
443
.
15.
Zbib, H. M., Rhee, M., and Hirth, J. P., 1996, 3D Simulation of Curved Dislocations: Discretization and Long Range Interactions, Advances in Engineering Plasticity and its Applications, Japan, Pergamon, NY.
16.
Rhee
,
M.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
,
Huang
,
H.
, and
Rubia
,
T. D. L.
,
1998
, “
Models for Long/Short Range Interactions in 3D Dislocation Simulation. Modeling & Simulations in Maters
,”
Sci. & Enger
,
6
, pp.
467
492
.
17.
Van der Giessen
,
E.
, and
Needleman
,
A.
,
1995
, “
Discrete Dislocation Plasticity: A Simple Planar Model. Modelling Simul
,”
Mater. Sci. Eng.
,
3
, pp.
689
735
.
18.
Zbib, H. M., and De La Rubia, T. D., 2002, “Multiscale Model of Plasticity,” Int. J. Plasticity, in press.
19.
Zbib, H. M., Rhee, M., and Hirth, J. P., 1996, “3D Simulation of Curved Dislocations: Discretization and Long Range Interactions,” Advances in Engineering Plasticity and its Applications, T. Abe and T. Tsuta, eds., Pergamon, NY, pp. 15–20.
20.
Diaz de la Rubia
,
T.
, and
Zbib
,
H. M.
,
2000
, “
Flow Localization in Irradiated Materials: A Multiscale Modeling Approach
,”
Nature (London)
,
406
, pp.
871
874
.
21.
Zbib
,
H. M.
,
de La Rubia
,
T. D.
,
Rhee
,
R.
, and
Hirth
,
J. P.
,
2000
, “
3D Dislocation Dynamics: Stress-Strain behavior and Hardening Mechanisms in FCC and BCC Metals
,”
J. Nucl. Mater.
,
276
, pp.
154
165
.
22.
Hirth
,
J. P.
,
Zbib
,
H. M.
, and
Lothe
,
J.
,
1998
, “
Forces on High Velocity Dislocations
,”
Mater. Sci. Eng.
,
6
, pp.
165
169
.
23.
Hirth, J. P., and Lothe, J., 1982, Theory of Dislocations, 2nd ed. New York, Wiley, p. 857.
24.
Khraishi
,
T. A.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
, and
Khaleel
,
M.
,
2000
, “
Analytical Solution for The Stress-Displacement Field of Glide Dislocation Loop
,”
Int. J. Eng. Sci.
,
38
, pp.
251
266
.
25.
Scattergood
,
R. O.
, and
Bacon
,
D. J.
,
1975
, “
The Orwan Mechanism in Ansiotropic Crystal
,”
Philos. Mag.
,
31
, pp.
179
198
.
26.
Gavazza
,
S. D.
, and
Barnett
,
D. M.
,
1976
, “
The Self-Force on a Planar Dislocation Loop in an Anisotropic Linear-Elastic Medium
,”
J. Mech. Phys. Solids
,
24
, pp.
171
185
.
27.
Bulatov, V. V., Rhee, M., and Cai, W., 2000, “Periodic Boundary Conditions for Dislocation Dynamics Simulations in Three Dimensions,” Mat. Res. Soc. Symp., Vol. 653, eds. L. P. Kubin, J. L. Bassani, K. Cho, H. Gao, R. L. B. Selinger.
28.
Demir
,
I.
,
Zbib
,
H. M.
, and
Khaleel
,
M.
,
2001
, “
On Crack Propagation in the Case of Multiple Cracks, Inclusions and Voids
,”
Theor. Appl. Fract. Mech.
, in press.
You do not currently have access to this content.