We analyze simple shear and torsion of single crystal copper by employing experiments, molecular dynamics simulations, and finite element simulations in order to focus on the kinematic responses and the apparent yield strengths at different length scales of the specimens. In order to compare torsion with simple shear, the specimens were designed to be of similar size. To accomplish this, the ratio of the cylinder circumference to the axial gage length in torsion equaled the ratio of the length to height of the simple shear specimens (0.43). With the [110] crystallographic direction parallel to the rotational axis of the specimen, we observed a deformation wave of material that oscillated around the specimen in torsion and through the length of the specimen in simple shear. In torsion, the ratio of the wave amplitude divided by cylinder circumference ranged from 0.02–0.07 for the three different methods of analysis: experiments, molecular dynamics simulations, and finite element simulations. In simple shear, the ratio of the deformation wave amplitude divided by the specimen length and the corresponding values predicted by the molecular dynamics and finite element simulations (simple shear experiments were not performed) ranged from 0.23–0.26. Although each different analysis method gave similar results for each type boundary condition, the simple shear case gave approximately five times more amplitude than torsion. We attributed this observation to the plastic spin behaving differently as the simple shear case constrained the dislocation activity to planar double slip, but the torsion specimen experienced quadruple slip. The finite element simulations showed a clear relation with the plastic spin and the oscillation of the material wave. As for the yield stress in simple shear, a size scale dependence was found regarding two different size atomistic simulations for copper (332 atoms and 23628 atoms). We extrapolated the atomistic yield stresses to the order of a centimeter, and these comparisons were close to experimental data in the literature and the present study.

1.
Shrivastava
,
S. C.
,
Jonas
,
J. J.
, and
Canova
,
G.
,
1982
,
J. Mech. Phys. Solids
,
30
(
1/2
), p.
75
75
.
2.
Johnson
,
G. R.
,
Hoegfeldt
,
J. M.
,
Lindholm
,
U. S.
, and
Nagy
,
A.
,
1983
,
ASME J. Eng. Mater. Technol.
,
105
, p.
42
42
.
3.
Montheillet
,
F.
,
Cohen
,
M.
, and
Jonas
,
J. J.
,
1984
,
Acta Metall.
,
32
(
11
), p.
2077
2077
.
4.
Canova
,
G. R.
,
Kocks
,
U. F.
, and
Jonas
,
J. J.
,
1984
,
Acta Metall.
,
32
(
2
), p.
211
211
.
5.
Field
,
D. P.
, and
Adams
,
B. L.
,
1990
,
ASME J. Eng. Mater. Technol.
,
112
, p.
315
315
.
6.
Horstemeyer
,
M. F.
, and
McDowell
,
D. L.
,
1998
,
Mech. Mater.
,
27
, p.
145
145
.
7.
Khan
,
A. S.
, and
Parikh
,
Y.
,
1986
,
Int. J. Plast.
,
2
, p.
379
379
.
8.
Hecker
,
S. S.
,
Stout
,
M. G.
, and
Eash
,
D. T.
,
1981
, Los Alamos Report, LA-UR-81-3447.
9.
Butler
,
G. C.
,
Graham
,
S.
,
McDowell
,
D. L.
,
Stock
,
S. R.
, and
Ferney
,
V. C.
,
1998
,
ASME J. Eng. Mater. Technol.
,
120
, p.
197
197
.
10.
Tanner
,
A. B.
, and
McDowell
,
D. L.
,
1999
,
Int. J. Plast.
,
15
, p.
375
375
.
11.
Yakou
,
T.
,
Hasegawa
,
T.
, and
Karashima
,
S.
,
1985
,
Trans. Jpn. Inst. Met.
,
26
(
2
), p.
88
88
.
12.
Franciosi
,
P.
,
Stout
,
M. G.
,
O’Rourke
,
J.
,
Erskine
,
B.
, and
Kocks
,
U. F.
,
1987
,
Acta Metall.
,
35
(
8
), p.
2115
2115
.
13.
Khan
,
A. S.
, and
Wang
,
X.
,
1993
,
Int. J. Plast.
,
9
, p.
889
889
.
14.
Schmid, E. and Boas, W., 1950, Plasticity of Crystals, Hughes, London.
15.
Phillips
,
W. L.
,
1962
,
Trans. Metall. Soc. AIME
,
224
, p.
845
845
.
16.
Jackson
,
P. J.
, and
Baskinski
,
Z. S.
,
1967
,
Can. J. Phys.
,
45
, p.
707
707
.
17.
Honeycombe, R. W. K., 1984, The Plastic Deformation of Metals, Edward Arnold, p. 20.
18.
Quilici
,
S.
,
Forest
,
S.
, and
Cailletaud
,
G.
,
1998
,
J. Phys. IV France
,
8
, p.
325
325
.
19.
Rashid
,
M. M.
,
Gray
,
G. T.
, and
Nemat-Nasser
,
S.
,
1992
,
Philos. Mag. A
,
65
(
3
), p.
707
707
.
20.
Horstemeyer
,
M. F.
,
McDowell
,
D. L.
, and
McGinty
,
R. D.
,
1999
,
Modell. Simul. Mater. Sci. Eng.
,
7
, pp.
253
273
.
21.
Foiles
,
S. M.
,
1985
,
Phys. Rev. B
,
32
, p.
7685
7685
.
22.
Brenner
,
D. W.
,
1996
, “
Chemical Dynamics and Bond-Order Potentials
,”
MRS Bulletin
,
pp.
36
41
.
23.
Stoneham
,
M.
,
Harding
,
J.
, and
Harker
,
T.
,
1996
, “
The Shell Model and Interatomic Potentials for Ceramics
,”
MRS Bulletin
, Feb. pp.
29
35
.
24.
Daw
,
M. S.
and
Baskes
,
M. I.
,
1984
,
Phys. Rev.
,
B29
, p.
6443
6443
.
25.
Daw
,
M. S.
,
Foiles
,
S. M.
, and
Baskes
,
M. I.
,
1993
,
Materials Science Reports, A Review Journal
,
9
, No.
7-8
, p.
251
251
.
26.
Angelo
,
J. E.
,
Moody
,
N. R.
, and
Baskes
,
M. I.
,
1995
,
Modelling Simul. Mater. Sci. Eng.
,
3
, p.
289
289
.
27.
Baskes
,
M. I.
,
Sha
,
X.
,
Angelo
,
J. E.
, and
Moody
,
N. R.
,
1997
,
Modelling Simul. Mater. Sci. Eng.
,
5
, p.
651
651
.
28.
Horstemeyer
,
M. F.
,
Baskes
,
M. I.
, and
Plimpton
,
S. J.
,
2001
,
Acta Mater.
,
49
, p.
4363
4363
.
29.
Horstemeyer
,
M. F.
, and
Baskes
,
M. I.
,
1999
,
ASME J. Eng. Mater. Technol.
,
121
, p.
114
114
.
30.
Cuitino
,
A. M.
, and
Ortiz
,
M.
,
1992
,
Modell. Simul. Mater. Sci. Eng.
,
1
, p.
225
225
.
31.
Hibbitt, Karlsson, and Sorensen, 1998, ABAQUS 5.8.
32.
Boukadia
,
J.
, and
Sidoroff
,
F.
,
1988
,
Arch. Mech.
,
40
(
5–6
), p.
497
497
.
33.
Follansbee, P. S., 1985 Metallurgical Applications of Shock Wave and High Strain Rate Phenomena, L. E. Murr, K. P. Staudhammer, and M. A. Meyers, eds. Marcell Dekker, New York, p. 451.
34.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
,
Acta Metall.
,
42
(
2
), p.
475
475
.
You do not currently have access to this content.