In the present study, a mathematical model has been developed to evaluate temperature and strain fields as well as dynamic and static microstructural changes during the nonisothermal forging process. To do so, a finite element analysis and a microstructural model based on Bergstrom’s model have been coupled for predicting temperature history, velocity and strain fields as well as phase transformations within the metal during and after hot forging. To verify the results of the model, theoretical predictions for loadstroke behavior and austenite grain size have been compared with experimental results for two grades of steel.
Issue Section:
Research Papers
1.
Chakrabarty, J., 1987, Theory of Plasticity, New York, McGraw-Hill.
2.
Oh
, S. I.
, 1982
, “Finite Element Analysis of Metal Forming Processes With Arbitrarily Shaped Dies
,” Int. J. Mech. Sci.
, 24
, p. 479
479
.3.
Dadras
, P.
, and Wells
, W. R.
, 1984
, “Heat Transfer Aspect of Nonisothermal Axisymmetric Upset Forging
,” ASME J. Eng. Ind.
, 106
, p. 187
187
.4.
Dadras
, P.
, and Burte
, P. R.
, 1986
, “Nonisothermal Axisymmetric Forging
,” ASME J. Eng. Ind.
, 108
, p. 288
288
.5.
Kim
, Y. J.
, and Yang
, D. Y.
, 1985
, “A Formulation for Rigid-Plastic Finite Element Method Considering Work-Hardening Effect
,” Int. J. Mech. Sci.
, 27
, pp. 487
–495
.6.
Diko
, F.
, and Hashmi
, M. S. J.
, 1993
, “A Finite Element Simulation of Non-Steady State Forming Processes
,” J. Mater. Process. Technol.
, 38
, pp. 115
–122
.7.
Gelin
, J. C.
, and Nguegang
, B. V.
, 1996
, “Modelling of the Thermo-Mechanical Coupling During Hot Forming of Viscoplastic Materials
,” J. Mater. Process. Technol.
, 60
, pp. 441
–446
.8.
Park
, J. M.
, Kim
, Y. H.
, and Bae
, W. B.
, 1997
, “An Upper Bound Analysis of Metal Forming Processes by Nodal Velocity Fields Using a Shape Function
,” J. Mater. Process. Technol.
, 71
, pp. 94
–101
.9.
Bini
, M.
, Cabrera
, J. M.
, and Prado
, J. M.
, 1998
, “Modelling the Hot Working of Simple Geometries Employing Physical-Based Constitutive Equations and the Finite Element Method
,” Mater. Forum
, 284–286
, pp. 369
–376
.10.
Jang
, Y.
, Ko
, D.
, and Kim
, B.
, 2000
, “Application of the Finite Element Method to Predict Microstructure Evolution in the Hot Forging of Steel
,” J. Mater. Process. Technol.
, 101
, pp. 85
–94
.11.
Lee
, R.
, Chen
, T.
, and Pan
, M.
, 1996
, “Evaluation of the Preform of a Stepped Forging Part by Coupled Thermo-Viscoplastic Finite Element Analysis and Visoplasticity
,” J. Mater. Process. Technol.
, 57
, pp. 278
–287
.12.
Lu
, X.
, and Balendra
, R.
, 1996
, “Evaluation of FE Models for the Calculation of Die Cavity Compensation
,” J. Mater. Process. Technol.
, 58
, pp. 212
–216
.13.
Sellars
, C. M.
, and Whiteman
, J. A.
, 1979
, “Recrystallization and Grain Growth in Hot Rolling
,” Met. Sci.
, 13
, pp. 187
–194
.14.
Bergstrom
, Y.
, 1969
, “A Dislocation Model for Stress-Strain Behavior of Polycrystalline α-Fe With Especial Emphasis the Variation of the Densities of Mobile and Immobile Dislocations
,” Mater. Sci. Eng.
, 5
, pp. 193
–200
.15.
Serajzadeh
, S.
, and Karimi Taheri
, A.
, 2003
, “Prediction of Flow Stress at Hot Working Condition
,” Mech. Res. Commun.
, 30
, pp. 87
–93
.16.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford, Oxford University Press.
17.
Semiatin
, S. L.
, Collings
, E. W.
, Wood
, V. E.
, and Altan
, T.
, 1987
, “Determination of the Interface Heat Transfer Coefficient for Non-Isothermal Bulk-Forming Processes
,” ASME J. Eng. Ind.
, 109
, pp. 49
–57
.18.
Kobayashi, S., Oh, S. I., and Altan, T., 1988, Metal Forming and Finite Element Method, Oxford, Oxford University Press.
19.
Anderson
, J. G.
, and Evans
, R. W.
, 1996
, “Modelling Flow Stress Evaluation During Elevated Temperature Deformation of Two Low Carbon Steels
,” Ironmaking Steelmaking
, 23
, pp. 130
–135
.20.
Serajzadeh
, S.
, 2003
, “Development of Constitutive Equations for a High Carbon Steel Using Additivity Rule
,” ISIJ Int.
, 43
, pp. 1057
–1062
.21.
Colas
, R.
, 1996
, “A Model for the Hot Deformation of Low-Carbon Steel
,” J. Mater. Process. Technol.
, 62
, pp. 180
–185
.22.
Lusk
, M.
, and Jou
, H. J.
, 1997
, “On the Rule of Additivity in Phase Transformation Kinetics
,” Metall. Mater. Trans. A
, 28
, pp. 287
–291
.23.
Medina
, S. F.
, and Mancila
, J. E.
, 1993
, “Determination of Static Recrystallization Critical Temperature of Austenite in Micro-Alloyed Steels
,” ISIJ Int.
, 33
, pp. 1257
–1264
.24.
Sellers
, C. M.
, 1985
, “The Kinetics of Softening Processes During Hot Working of Austenite
,” Czech. J. Phys.
, B35
, pp. 239
–248
.25.
Darken, L. S., and Gurry, R. W., 1953, Physical Chemistry of Metals, McGraw-Hill, New York, p. 415.
26.
Morales
, R. D.
, Lopez
, A. G.
, and Oliveres
, I. M.
, 1991
, “Heat Transfer Analysis During Water Spray Cooling of Steel Rods
,” ISIJ Int.
, 30
, pp. 48
–57
.27.
Hodgson
, P. D.
, and Gibbs
, R. K.
, 1992
, “A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels
,” ISIJ Int.
, 32
, pp. 1329
–1338
.28.
Serajzadeh
, S.
, and Karimi Taheri
, A.
, 2002
, “An Investigation of the Silicon Role on Austenite Recrystallization
,” Mater. Lett.
, 6
, pp. 984
–989
.29.
Umemoto
, M.
, Ohtsuka
, H.
, and Tamura
, I.
, 1983
, “Transformation to Pearlite From Work-Hardened Austenite
,” Trans. Iron Steel Inst. Jpn.
, 23
, pp. 775
–784
.Copyright © 2004
by ASME
You do not currently have access to this content.