The common methods used to determine the diffusion coefficients of polymer composites are based on the solution of Fickian diffusion equation in one-dimensional (1D) rectangular domain. However, these diffusivities usually involve errors primarily due to finite sample dimensions and anisotropy introduced by fiber reinforcements. In this study, the solution of transient, three-dimensional (3D) anisotropic Fickian diffusion equation is nondimensionalized using six parameters. The solution is then used to analyze the combined contribution of finite sample dimensions and anisotropy to the errors involved in diffusion constants calculated by 1D methods. The small time solution of the Fickian diffusion equation in 3D domain is used to analyze the slope used in diffusivity calculations. It is shown that the diffusion coefficient calculated by the 1D approach is exact only if the correct slope of percent mass gain versus root square time curve at t=0 is used. However, it has also been shown that depending on the part geometry and degree of anisotropy, there might be considerable differences between the measured slope from the experimental data and the actual slope at t=0. The mismatch between the slopes results in as much as 50% errors in estimates of diffusion coefficients. Using the 3D solution in nondimensional form, the magnitudes of these errors are studied. A least-square curve-fit method, which yields accurate anisotropic diffusion coefficients, is proposed. The method is demonstrated on artificially generated experimental data for a polymer composite containing 50% unidirectional reinforcement. The anisotropic diffusion coefficients used to generate the data are recovered with less than 1% error.

1.
Akay
,
M.
,
Kong
,
S.
,
Mun
,
A.
, and
Stanley
,
A.
,
1997
, “
Influence of Moisture on the Thermal and Mechanical Properties of Autoclaved and Oven-Cured Kevlar-49/Epoxy Laminates
,”
Compos. Sci. Technol.
,
57
(
5
), pp.
565
571
.
2.
Aktas, L., Hamidi, Y., and Altan, M. C., 2002, “Effect of Moisture Absorption on Mechanical Properties of Resin Transfer Molded Composites,” Proc. of ASME IMEC&E 2002, Paper No. 39223.
3.
Krolikowski
,
W.
,
1964
, “
Stress-Strain Characteristics of Glass Fiber Reinforced Polyester
,”
SPE J.
,
20
, pp.
1031
1035
.
4.
Vin˜a
,
J.
,
Garcia
,
E. A.
,
Argu¨elles
,
A.
, and
Vin˜a
,
I.
,
2000
, “
The Effect of Moisture on the Tensile and Interlaminar Shear Strengths of Glass or Carbon Fiber Reinforced PEI
,”
J. Mater. Sci. Lett.
,
19
(
7
), pp.
579
581
.
5.
Choi
,
H. S.
,
Ahn
,
K. J.
,
Nam
,
J. D.
, and
Chun
,
H. J.
,
2001
, “
Hygroscopic Aspects of Epoxy/Carbon Fiber Composite Laminates in Aircraft Environments
,”
Composites, Part A
,
32
(
5
), pp.
709
720
.
6.
Stark
,
N.
,
2001
, “
Influence of Moisture Absorption on Mechanical Properties of Wood Flour-Polypropylene Composites
,”
J. Thermoplastic Compos. Mater.
,
14
(
5
), pp.
421
432
.
7.
Hoppel, C., Bogetti, T., and Newill, J. F., 2000. “Effect of Voids on Moisture Diffusion in Composite Materials,” Proc. of American Society for Composites, 15th Tech. Conf., College Station, TX, pp. 1094–1102.
8.
Singh
,
K. S.
,
Singh
,
P. N.
, and
Rao
,
R. M. V. G. K.
,
1992
, “
Hygrothermal Effects on Chopped Fibre/Woven Fabric Reinforced Epoxy Composites. Part A: Moisture Absorption Characteristics
,”
J. Reinf. Plast. Compos.
,
10
(
5
), pp.
446
456
.
9.
Fick
,
A.
,
1855
, “
Ueber Diffusion
,”
Ann. Phys. (Leipzig)
,
170
, pp.
59
86
.
10.
Shen
,
C. H.
, and
Springer
,
G. S.
,
1976
, “
Moisture Absorption and Desorption of Composite Materials
,”
J. Compos. Mater.
,
10
(
1
), pp.
2
20
.
11.
Bonniau
,
P.
, and
Bunsell
,
A. R.
,
1981
, “
A Comparative Study of Water Absorption Theories Applied to Glass Epoxy Composites
,”
J. Compos. Mater.
,
15
(
3
), pp.
272
293
.
12.
ASTM D 5229/D 5229M-92, “Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials.”
13.
Starink
,
M. J.
,
Starink
,
L. M. P.
, and
Chambers
,
A. R.
,
2002
, “
Moisture Uptake in Monolithic and Composite Materials: Edge Correction for Rectanguloid Samples
,”
J. Mater. Sci.
,
37
(
2
), pp.
287
294
.
14.
Aronhime
,
M. T.
,
Neumann
,
S.
, and
Marom
,
G.
,
1987
, “
The Anisotropic Diffusion of Water in Kevlar-epoxy Composites
,”
J. Mater. Sci.
,
22
(
7
), pp.
2435
2446
.
15.
Mehta
,
B. S.
,
Dibenedetto
,
A. T.
, and
Kardos
,
J. L.
,
1978
, “
Prediction of Transport Properties of Composites from Equations of Elasticity
,”
Polym. Eng. Sci.
,
18
(
2
), pp.
114
119
.
16.
Li
,
S.
,
Lee
,
L. J.
, and
Castro
,
J.
,
2002
, “
Effective Mass Diffusivity in Composites
,”
J. Compos. Mater.
,
36
(
14
), pp.
709
1724
.
17.
Sumaru
,
K.
, and
Yamanaka
,
T.
,
1998
, “
Transient and Anisotropic Properties of Diffusive Transport in Spatially Periodic Media
,”
J. Phys. D
,
31
(
15
), pp.
1896
1903
.
18.
Fourier, J. B., 1955, The Analytical Theory of Heat, Dover Publications Inc., New York.
19.
Allred, R. E., and Lindrose, A. M., 1978, “The Room Temperature Moisture Kinetics of Kevlar 49 Fabric/Epoxy Laminates,” Tech. Report, Sandia National Laboratories.
20.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Clarendon Press, Oxford.
21.
Pun, L., 1969, Introduction to Optimization Practice, Wiley, New York.
22.
Aktas
,
L.
,
Hamidi
,
Y.
, and
Altan
,
M. C.
,
2002
, “
Effect of Moisture on the Mechanical Properties of Resin Transfer Molded Composites. Part I: Absorption
,”
J. Mater. Process. Manuf. Sci.
,
10
(
4
), pp.
239
254
.
You do not currently have access to this content.