A high-speed and high-sensitivity thermographic-infrared (IR) imaging system has been used to investigate the temperature evolutions of SA533B1 steel specimens during high-cycle fatigue experiments. Both thermodynamics and heat-transfer theories are applied to quantify the relationship between the observed temperature variations and stress–strain states during fatigue. The thermoelastic effect has been utilized to calculate the maximum stress level during fatigue testing. The predicted results matched the experimental data quite well. Different temperature and strain behaviors have been observed between cylindrical and flat specimens during high-cycle fatigue experiments. Explanations have been provided, based on Lu¨ders band evolutions in flat specimens during fatigue, which have been observed in detail by thermography. Numerical methods have been provided to convert the temperature map (thermograph) into heat-dissipation-rate (HDR) map, which illustrates the kinetics of the Lu¨ders-band evolution. Thus, the thermography technology can provide an effective means to “watch” and “quantify” the heat-evolution processes, such as the mechanical-damage behaviors, which can open up new opportunities for in- situ studying mechanical and phase-transformation behaviors in detail.

1.
Margulies
,
L.
,
Winther
,
G.
, and
Poulsen
,
H. F.
,
2001
, “
In Situ Measurement of Grain Rotation during Deformation of Polycrystals
,”
Science
,
291
, pp.
2392
2394
.
2.
Larson
,
B. C.
,
Yang
,
W.
,
Ice
,
G. E.
,
Budai
,
J. D.
, and
Tischler
,
J. Z.
,
2002
, “
Three-Dimensional X-Ray Structural Microscopy with Submicrometre Resolution
,”
Nature (London)
,
415
, pp.
887
890
.
3.
Wang
,
Y. D.
,
Tian
,
H.
,
Stoica
,
A. D.
,
Wang
,
X.
,
Liaw
,
P. K.
, and
Richardson
,
J. W.
,
2003
, “
The Development of Residual Stresses due to Grain Orientation in a Cyclically Deformed Alloy
,”
Nature Materials
,
2
(
2
), pp.
101
106
, http://www.nature.com/cgi-taf/DynaPage.taf?file=/nmat/journal/v2/n2/full/nmat812.html.
4.
Jiang, L., Huang, M., Brooks, C. R., and Liaw, P. K., 1999, “Acoustic Emission Detection of Fatigue Damage,” in Proceeding of Nondestructive Evaluation (NDE) and Materials Properties IV Symposium, TMS, edited by Liaw, P. K., Arsenault, R. J., Green, Jr., R. E., Murty, K. L., and Thompson, R. B., pp. 43–60.
5.
Fine, M. E., Connor, Z. M., and Achenbach, J. D., 1999, “Early Stages of Fatigue Damage in Riveted Alclad 2024-T3 Aluminum Alloy Lap Joint Specimens,” in Proceeding of Nondestructive Evaluation (NDE) and Materials Properties IV Symposium, TMS, edited by Liaw, P. K., Arsenault, R. J., Green, Jr., R. E., Murty, K. L., and Thompson, R. B., pp. 1–9.
6.
Birnbaum, G., and Free, G., 1979, “Eddy-current Characterization of Materials and Structures: A Symposium/Sponsored by ASTM Committee E-7 on Nondestructive Testing,” American Society for Testing and Materials, Gaithersburg, MD, 5–7 September.
7.
Moss, A. A., and Goldberg, H. I., 1979, “Computed Tomography, Ultrasound and X-Ray: An Integrated Approach,” Masson Publication.
8.
Jiang
,
L.
,
Liaw
,
P. K.
,
Brooks
,
C. R.
,
Somieski
,
B.
, and
Klarstrom
,
D. L.
,
2001
, “
Nondestructive Evaluation of Fatigue Damage in ULTIMET® Superalloy
,”
Mater. Sci. Eng., A
,
313
(
1–2
), pp.
153
159
.
9.
Jeong
,
H.
,
Hsu
,
D. K.
, and
Liaw
,
P. K.
,
1998
, “
Anisotropic Conductivities of Multiphase Particulate Metal-Matrix Composites
,”
Compos. Sci. Technol.
,
58
, pp.
65
76
.
10.
Liaw
,
P. K.
,
Hsu
,
D. K.
,
Yu
,
N.
,
Miriyala
,
N.
, and
Jeong
,
H.
,
1996
, “
Investigation of Metal and Ceramic-Matrix Composites Moduli: Experiment and Theory
,”
Acta Mater.
,
44
(
5
), pp.
2101
2113
.
11.
Pitchumany
,
R.
,
Liaw
,
P. K.
,
Yao
,
S. C.
,
Hsu
,
D. K.
, and
Jeong
,
H.
,
1995
, “
Theoretical-Models for the Anisotropic Conductivities of 2-Phase and 3-Phase Metal-Matrix Composites
,”
Acta Metall. Mater.
,
43
(
8
), pp.
3045
3059
.
12.
Jeong
,
H. J.
,
Hsu
,
D. K.
,
Shannon
,
R. E.
, and
Liaw
,
P. K.
,
1994
, “
Characterization of Anisotropic Elastic-Constants of Silicon-Carbide Particulate-Reinforced Aluminum Metal-Matrix Composites: 1. Experiment
,”
Metall. Mater. Trans. A
,
25
(
4
), pp.
799
809
.
13.
Taylor
,
S.
, and
Morken
,
J.
,
1998
, “
Thermographic Selection of Effective Catalysts from an Encoded Polymer-Bound Library
,”
Science
,
280
, pp.
267
270
.
14.
Chaerle
,
L.
,
Caeneghem
,
W. V.
,
Messens
,
E.
,
Lambers
,
H.
,
Montagu
,
M. V.
, and
Straeten
,
D. V. D.
,
1999
, “
Presymptomatic Visualization of Plant-virus Interactions by Thermography
,”
Nat. Biotechnol.
,
17
, pp.
813
816
.
15.
Ay
,
H.
,
Jang
,
J.
, and
Yeh
,
J. N.
,
2002
, “
Local Heat Transfer Measurements of Plate Finned-tube Heat Exchangers by Infrared Thermography
,”
Int. J. Heat Mass Transfer
,
45
(
20
), pp.
4069
4078
.
16.
Marwaha
,
B.
, and
Luss
,
D.
,
2002
, “
Formation and Dynamics of a Hot Zone in Radial Flow Reactor
,”
AIChE J.
,
48
(
3
), pp.
617
624
.
17.
Lohr, D. T., Enke, N. F., and Sandor, B. I., 1987, “Analysis of Fatigue Damage Evolution by Differential Infrared Thermography,” Dynamic Failure: Proceedings of the 1987 SEM Fall Conference, October 25–27, Savannah, Georgia, pp. 169–174.
18.
Liaw
,
P. K.
,
Wang
,
H.
,
Jiang
,
L.
,
Yang
,
B.
,
Huang
,
J. Y.
,
Kuo
,
R. C.
, and
Huang
,
J. G.
,
2000
, “
Thermographic Detection of Fatigue Damage of Pressure Vessel Steels at 1,000 Hz and 20 Hz
,”
Scr. Mater.
,
42
, pp.
389
395
.
19.
Luong
,
M. P.
,
1998
, “
Fatigue Limit Evaluation of Metals Using An Infrared Thermographic Technique
,”
Mech. Mater.
,
28
, pp.
155
163
.
20.
Guduru
,
P. R.
,
Zehnder
,
A. T.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
2001
, “
Dynamic Full Field Measurements of Crack Tip Temperatures
,”
Eng. Fract. Mech.
,
68
, pp.
1535
1556
.
21.
Machin
,
T. J.
, and
Vernon
,
P. J.
,
2001
, “
Detecting Subsurface Cracking in Laminated Membranes Using Infrared Imaging
,”
Polym. Compos.
,
22
, pp.
752
761
.
22.
Gross
,
T. S.
, and
Weertman
,
J.
,
1982
, “
Calorimetric Measurement of The Plastic Work of Fatigue Crack-propagation in 4140-Steel
,”
Metall. Mater. Trans. A
,
13
(
12
), pp.
2165
2172
.
23.
Taylor
,
G. I.
, and
Quinney
,
H.
,
1937
, “
The Latent Heat Remaining in a Metal after Cold Working
,”
Proc. R. Soc. London, Ser. A
,
163
, pp.
157
181
.
24.
Henneke
,
E. G.
,
Reifsnider
,
K. L.
,
Shuford
,
R. J.
,
Hinton
,
Y. L.
,
Markert
,
B. R.
,
1982
, “
Thermography—Applications to the Manufacture and Non-Destructive Characterization of Composites
,”
Proc. SPIE
,
371
, pp.
98
104
.
25.
Biot
,
M. A.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
(
3
), pp.
240
253
.
26.
Rocca
,
R.
, and
Bever
,
M. B.
,
1950
, “
The Thermoelastic Effect in Iron and Nickel as a Function of Temperature
,”
Trans. AIME
,
188
, pp.
327
333
.
27.
Yang
,
B.
,
Liaw
,
P. K.
,
Wang
,
H.
,
Jiang
,
L.
,
Huang
,
J. Y.
,
Kuo
,
R. C.
, and
Huang
,
J. G.
,
2001
, “
Thermographic Investigation of The Fatigue Behavior of Reactor Pressure Vessel Steels
,”
Mater. Sci. Eng., A
,
314
, pp.
131
139
.
28.
Dillon
,
O. W.
,
1963
, “
Coupled Thermoplasticity
,”
J. Mech. Phys. Solids
,
11
, pp.
21
23
.
29.
Yang
,
B.
,
Liaw
,
P. K.
,
Wang
,
G.
,
Peter
,
W. H.
,
Buchanan
,
R. A.
,
Yokoyama
,
Y.
,
Huang
,
J. Y.
,
Kuo
,
R. C.
,
Huang
,
J. G.
,
Fielden
,
D. E.
, and
Klarstrom
,
D. L.
,
2004
, “
Thermal-Imaging Technologies for Detecting Damage during High-Cycle Fatigue
,”
Metall. Mater. Trans. A
,
35
(
1
), pp.
15
23
.
30.
Zehnder
,
A. T.
, and
Rosakis
,
A. J.
,
1991
, “
On the Temperature Distribution at the Vicinity of Dynamically Propagating Cracks in 4340 Steel
,”
J. Mech. Phys. Solids
,
39
, pp.
385
415
.
31.
Zhou
,
M.
,
Ravichandran
,
G.
, and
Rosakis
,
A. J.
,
1996
, “
Dynamically Propagating Shear Bands in Impact-loaded Prenotched Plates—I. Experimental Investigations of Temperature Signatures and Propagation Speed
,”
J. Mech. Phys. Solids
,
44
, pp.
981
1006
.
32.
Liaw, P. K., Yang, B., Tian, H., Jiang, L., Wang, H., Huang, J. Y., Kuo, R. C., Huang, J. G., Fielden, D., Strizak, J. P., and Mansur, L. K., 2002, “Frequency Effects on Fatigue Behavior and Temperature Evolution of Steels,” Fatigue and Fracture Mechanics: 33rd Volume, ASTM STP 1417, W. G. Reuter and R. S. Piascik, Eds., ASTM International, West Conshohocken, PA, pp. 524–556.
33.
Jiang
,
L.
,
Wang
,
H.
,
Liaw
,
P. K.
,
Brooks
,
C. R.
, and
Klarstrom
,
D. L.
,
2001
, “
Characterization of the Temperature Evolution during High-Cycle Fatigue of the ULTIMET Superalloy: Experiment and Theoretical Modeling
,”
Metall. Mater. Trans. A
,
32
, pp.
2279
2296
.
34.
Wang
,
H.
,
Jiang
,
L.
,
Liaw
,
P. K.
,
Brooks
,
C. R.
, and
Klasstrom
,
D. L.
,
2000
, “
Infrared Temperature Mapping of ULTIMET Alloy during High-Cycle Fatigue Tests
,”
Metall. Mater. Trans. A
,
31
, pp.
1307
1310
.
35.
Jiang
,
L.
,
Wang
,
H.
,
Liaw
,
P. K.
,
Brooks
,
C. R.
, and
Klarstrom
,
D. L.
,
2002
, “
Effects of Cyclic Loading on Temperature Evolution of ULTIMET® Superalloy: Experiment and Theoretical Modeling
,”
Trans. Nonferrous. Met. Soc. China
,
12
, pp.
734
747
.
36.
Chen
,
L. J.
,
Liaw
,
P. K.
,
Wang
,
H.
,
He
,
Y. H.
,
McDaniels
,
R. L.
,
Jiang
,
L.
,
Yang
,
B.
, and
Klarstrom
,
D. L.
,
2004
, “
Cyclic Deformation Behavior of Haynes HR-120® Superalloy under Low-cycle Fatigue Loading
,”
Mech. Mater.
,
36
, pp.
85
98
.
37.
Jiang
,
L.
,
Wang
,
H.
,
Liaw
,
P. K.
,
Brooks
,
C. R.
,
Chen
,
L.
, and
Klarstrom
,
D. L.
,
2004
, “
Temperature Evolution and Life Prediction in Fatigue of Superalloys
,”
Metall. Mater. Trans. A
,
35A
(
3
), pp.
839
848
.
38.
Wang
,
H.
,
Jiang
,
L.
,
He
,
Y.
,
Chen
,
L.
,
Liaw
,
P.
,
Seeley
,
R.
, and
Klarstrom
,
D.
,
2002
, “
Infrared Imaging during Low-cycle Fatigue of HR-120 Alloy
,”
Metall. Trans. A
,
33
, pp.
1287
1292
.
39.
Jiang
,
L.
,
Wang
,
H.
,
Liaw
,
P. K.
,
Brooks
,
C. R.
, and
Klarstrom
,
D. L.
,
2004
, “
Temperature Evolution during Low-Cycle Fatigue of ULTIMET Alloy: Experiment and Modeling
,”
Mech. Mater.
,
36
, pp.
73
84
.
40.
Yang
,
B.
,
2003
, “
Thermographic Detection of Fatigue Damage of Reactor Pressure Vessel (RPV) Steels
,”
J. Mater. Eng. Perform.
,
12
(
3
), pp.
345
353
.
41.
Wang
,
G. Y.
,
Liaw
,
P. K.
,
Peter
,
W. H.
,
Yang
,
B.
,
Freels
,
M.
,
Yokoyama
,
Y.
,
Benson
,
M. L.
,
Green
,
B. A.
,
Saleh
,
T. A.
,
McDaniels
,
R. L.
,
Steward
,
R. V.
,
Buchanan
,
R. A.
,
Liu
,
C. T.
, and
Brooks
,
C. R.
,
2004
, “
Fatigue Behavior and Fracture Morphology of Zr50A110Cu40 and Zr50A110Cu30Ni10 Bulk-Metallic Glasses
,”
Intermetallics
,
12
(
10-11
), pp.
1219
1227
.
42.
Yang
,
B.
,
Liaw
,
P. K.
,
Wang
,
G.
,
Morrison
,
M.
,
Liu
,
C. T.
,
Buchanan
,
R. A.
, and
Yokoyama
,
Y.
,
2004
In-Situ Thermographic Observation of Mechanical Damage in Bulk-Metallic Glasses During Fatigue and Tensile Experiments
,”
Intermetallics
,
12
(
10-11
); pp.
1265
1274
.
43.
Wang
,
G. Y.
,
Liaw
,
P. K.
,
Peter
,
W. H.
,
Yang
,
B.
,
Yokoyama
,
Y.
,
Benson
,
M. L.
,
Green
,
B. A.
,
Kirkham
,
M. J.
,
White
,
S. A.
,
Saleh
,
T. A.
,
McDaniels
,
R. L.
,
Steward
,
R. V.
,
Buchanan
,
R. A.
,
Liu
,
C. T.
, and
Brooks
,
C. R.
,
2004
, “
Fatigue Behavior of Bulk-Metallic Glasses
,”
Intermetallics
,
12
(
7–9
), pp.
885
892
.
You do not currently have access to this content.