In AFM measurements of surface morphology, the locality is a traditional assumption, i.e., the load recorded by AFM is simply the function of the distance between the tip of AFM and the point on a sample right opposite the tip [Giessibl, F. J., 2003, “Advances in Atomic Force Microscopy,” Rev. Mod. Phys., 75, pp. 949–983]. This paper presents that nonlocality effect may play an important role in atomic force microscopic (AFM) measurement. The nonlocality of AFM measurement results from two different finite scales: the finite scale of the characteristic intermolecular interaction distance and the geometric size of AFM tip. With a coupled molecular-continuum method, we analyzed this nonlocality effect in detail. It is found that the nonlocality effect can be formulated by a few dimensionless parameters characterizing the ratio of the following scales: the characteristic intermolecular interaction distance between the AFM tip and the sample, the characteristic size of the tip and the characteristic nano-structure and∕or the nanoscale roughness on the surface of a sample. The present work also suggests a data processing algorithm—the approaching method, which can reduce the nonlocality effect in AFM measurement of surface morphology effectively.

1.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
Ch.
, 1986, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
0031-9007,
56
(
9
), pp.
930
933
.
2.
Mati
,
O.
,
Drake
,
B.
, and
Hansma
,
P. K.
, 1987, “
Atomic Force Microscopy of Liquid-Covered Surfaces: Atomic Resolution Images
,”
Appl. Phys. Lett.
0003-6951,
51
(
7
), pp.
484
486
.
3.
Albrecht
,
T. R.
, and
Quate
,
C. F.
, 1987, “
Atomic Resolution Imaging of a Nonconductor by Atomic Force Microscopy
,”
J. Appl. Phys.
0021-8979,
62
(
7
), pp.
2599
2602
.
4.
Meyer
,
M.
, and
Amer
,
N. M.
, 1990, “
Optical-Beam-deflection Atomic Force Microscopy: the NaCl (001) Surface
,”
Appl. Phys. Lett.
0003-6951,
56
(
21
), pp.
2100
2101
.
5.
Thundat
,
T.
,
Warmack
,
R. J.
,
Allison
,
D. P.
,
Bottomley
,
L. A.
,
Lourenco
,
A. J.
, and
Ferrell
,
T. L.
, 1992, “
Atomic Force Microscopy of Deoxyribonucleic Acid Strands Absorbed on Mica: the Effect of Humidity on Apparent Width and Image Contrast
,”
J. Vac. Sci. Technol. A
0734-2101,
10
(
4
), pp.
630
635
.
6.
Bai
,
C. L.
, 2000,
Technique of Scanning Force Microscope
,
Science Press
, Beijing, China (in Chinese).
7.
Ciraci
,
S.
,
Baratoff
,
A.
, and
Batra
,
I. P.
, 1990, “
Tip-Sample Interaction Effects in Scanning-Tunneling and Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
41
(
5
), pp.
2763
2775
.
8.
Paik
,
S. M.
,
Kim
,
S.
, and
Schuller
,
I. K.
, 1991, “
Method of Determining Tip Structure in Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
44
(
7
), pp.
3272
3276
.
9.
Abraham
,
F. F.
,
Batra
,
I. P.
, and
Ciraci
,
S.
, 1988, “
Effect of Tip Profile on Atomic Force Microscopy Images: a Model Study
,”
Phys. Rev. Lett.
0031-9007,
60
(
13
), pp.
1314
1317
.
10.
Tang
,
H.
,
Joachim
,
C.
, and
Devillers
,
J.
, 1993, “
Interpretation of AFM Images: the Graphite Surface With a Diamond Tip
,”
Surf. Sci.
0039-6028,
291
, pp.
439
450
.
11.
Sasaki
,
N.
and
Tsukada
,
M.
, 1995, “
Effect of the Tip Structure on Atomic-Force Microscopy
,”
Phys. Rev. B
0163-1829,
52
(
11
), pp.
8471
8482
.
12.
Hölscher
,
H.
,
Allers
,
W.
,
Schwarz
,
U. D.
,
Schwarz
,
A.
, and
Wiesendanger
,
R.
, 2000, “
Interpretation of ‘True Atomic Resolution’ Images of Graphite (0001) in Noncontact Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
62
(
11
), pp.
6967
6970
.
13.
Kadau
,
K.
,
Germann
,
T. C.
,
Hadjiconstantinou
,
N. G.
,
Lomdahl
,
P. S.
,
Dimonte
,
G.
,
Holian
,
B. L.
, and
Alder
,
B. J.
, 2004, “
Nanohydrodynamics Simulations: an Atomistic View of the Rayleigh-Taylor Instability
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
16
), pp.
5851
5855
.
14.
Israelachvili
,
J. N.
, 1985,
Intermolecular and Surface Forces
,
Academic
, London, UK, Chap. 10.
15.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
, Vol.
1
in
Fortran Numerical Recipes
,
Cambridge University Press
, Cambridge, UK, Chap. 4.
16.
Giessibl
,
F. J.
, 2003, “
Advances in Atomic Force Microscopy
,”
Rev. Mod. Phys.
0034-6861,
75
(
3
), pp.
949
983
.
17.
Fernandez-Varea
,
J. M.
, and
Garcia-Molina
,
R.
, 2000, “
Hamaker Constants of Systems Involving Water Obtained from a Dielectric Function That Fulfills the Sum Rule
,”
J. Colloid Interface Sci.
0021-9797,
231
, pp.
394
397
.
18.
Senden
,
T. J.
, and
Drummond
,
C. J.
, 1995, “
Surface Chemistry and Tip-Sample Interactions in Atomic Force Microscopy
,”
Colloids Surf., A
0927-7757,
94
, pp.
29
51
.
19.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.