This paper is aimed at analyzing stresses and fiber-matrix interfacial debonding in three-dimensional composite microstructures. It incorporates a 3D cohesive zone interface model based element to simulate interfacial debonding in the commercial code ABAQUS. The validated element is used to examine the potential debonding response in the presence of fiber–fiber interactions. A two-fiber model with unidirectional fibers is constructed and the effect of relative fiber spacing and volume fraction on the stress distribution in the matrix is studied. In addition, the effect of fiber orientation and spacing on the nature of initiation and propagation of interfacial debonding is studied in a two-fiber model. These results are expected to be helpful in formulating future studies treating optimal fiber orientations and payoff in controlling fiber spacing and alignment.

1.
Benveniste
,
Y.
, 1984, “
On the Effect of Debonding on the Overall Behavior of Composite Materials
,”
Mech. Mater.
0167-6636,
3
, pp.
349
358
.
2.
Hashin
,
Z.
, 1990, “
Thermoelastic Properties of Fiber Composites with Imperfect Interface
,”
Mech. Mater.
0167-6636,
8
, pp.
333
348
.
3.
Pagano
,
N. J.
, and
Tandon
,
G. P.
, 1990, “
Modeling of Imperfect Bonding in Fiber Reinforced Brittle Matrix Composites
,”
Mech. Mater.
0167-6636,
9
, pp.
49
64
.
4.
Yuan
,
F. G.
,
Pagano
,
N. J.
, and
Cai
,
X.
, 1997, “
Elastic Moduli of Brittle Matrix Composites with Interfacial Debonding
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
177
201
.
5.
Needleman
,
A.
, 1987, “
A Continuum Model for Void Nucleation by Interfacial Debonding
,”
J. Appl. Mech.
0021-8936,
54
, pp.
525
531
.
6.
Needleman
,
A.
, 1990, “
An Analysis of Decohesion Along an Imperfect Interface
,”
Int. J. Fract.
0376-9429,
42
, pp.
21
40
.
7.
Needleman
,
A.
, 1992, “
Micromechanical Modeling of Interfacial Decohesion
,”
Ultramicroscopy
0304-3991,
40
, pp.
203
214
.
8.
Tvergaard
,
V.
, 1990, “
Effect of Fiber Debonding in a Whisker-Reinforced Metal
,”
Mater. Sci. Eng., A
0921-5093,
125
, pp.
203
213
.
9.
Tvergaard
,
V.
, 1995, “
Fiber Debonding and Breakage in a Whisker Reinforced Metal
,”
Mater. Sci. Eng., A
0921-5093,
190
, pp.
215
222
.
10.
Ghosh
,
S.
,
Ling
,
Y.
,
Majumdar
,
B. S.
, and
Kim
,
R.
, 2000, “
Interfacial De-bonding in Multiple Fiber-Reinforced Composites
,”
Mech. Mater.
0167-6636,
32
, pp.
561
591
.
11.
Li
,
Shanhu
, and
Ghosh
,
S.
, 2004, “
Debonding in Composite Microstructures with Morphological Variations
,”
Int. J. Comput. Math.
0020-7160,
1
, pp.
121
149
.
12.
Foulk
,
J. W.
,
Allen
,
D. H.
, and
Helms
,
K. L. E.
, 2000, “
Formulation of a Three-Dimensional Cohesive Zone Model for Application to a Finite Element Algorithm
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
183
, pp.
51
66
.
13.
Allen
,
D. H.
,
Jones
,
R. H.
, and
Boyd
,
J. G.
, 1994, “
Micro-Mechanical Analysis of Continuous Fiber Metal Matrix Composite Including the Effects of Matrix Visco-Plasticity and Evolving Damage
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
502
529
.
14.
Lo
,
D. C.
, and
Allen
,
D. H.
, 1994, “
Modeling of Delamination Damage Evolution on Laminated Composites Subjected to low Velocity Impact
,”
Int. J. Damage Mech.
1056-7895,
3
, pp.
378
407
.
15.
Lissenden
,
C. J.
, and
Herakovich
,
C. T.
, 1995, “
Numerical Modeling of Damage Development and Viscoplasticity in Metal Matrix Composites
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
126
, pp.
289
303
.
16.
Geubelle
,
P. H.
, 1995, “
Finite Deformation Effects in Homogeneous and Interfacial Fracture
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
1003
1016
.
17.
Camacho
,
G. T.
, and
Ortiz
,
M.
, 1996, “
Computational Modeling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2899
2938
.
18.
Ortiz
,
M.
, and
Pandolfi
,
A.
, 1999, “
Finite-Deformation Irreversible Cohesive Element for Three-Dimensional Crack-Propagation Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
44
, pp.
1267
1282
.
19.
Scheider
,
Ingo
, 2001, “
Cohesive Model for Crack Propagation Analyses of Structures with Elastic-Plastic Material Behavior: Foundations and Implementation
,” GKSS Research Center, Geesthacht.
20.
Segurado
,
Javier
, and
LLorca
,
Javier
, 2004, “
A New Three-Dimensional Interface Finite Element to Simulate Fracture in Composites
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
2977
2993
.
21.
Abaqus
, 2001, “
User’s Manual
,” Hibbit, Karlsson, and Sorensen, Inc.
22.
Moorthy
,
S.
, and
Ghosh
,
S.
, 2000, “
Adaptivity and Convergence in the Voronoi Cell Finite Element Model for Analyzing Heterogeneous Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
185
, pp.
37
74
.
23.
Raghavan
,
P.
and
Ghosh
,
S.
, 2004, “
Concurrent Multi-Scale Analysis of Elastic Composites by a Multi-Level Computational Model
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
497
538
.
24.
Moorthy
,
S.
, and
Ghosh
,
S.
, 1996, “
A Model for Analysis of Arbitrary Composite and Porous Microstructures with Voronoi Cell Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
2363
2398
.
25.
Chandra
,
N.
,
Li
,
H.
,
Seth
,
C.
, and
Ghonem
,
H.
, 2002, “
Some Issues in the Application of Cohesive Zone Models for Metal Ceramic Interfaces
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2827
2855
.
26.
Raghavan
,
P.
, and
Ghosh
,
S.
, “
A Continuum Damage Mechanics Model for Unidirectional Composites Undergoing Interfacial Debonding
,”
Mech. Mater.
0167-6636 (in press).
27.
Raghavan
,
P.
, and
Ghosh
,
S.
, 2004, “
Adaptive Multi-Scale Computational Modeling of Composite Materials
,”
Comput. Model. Eng. Sci.
1526-1492,
5
, pp.
151
170
.
You do not currently have access to this content.