Abstract
In this paper, we deal with the nonlinear vibration of viscoelastic shell structures. Coupling an approximated harmonic balance method with one mode Galerkin’s procedure, one obtains an amplitude equation depending on two complex coefficients. The latter are determined by solving a classical eigenvalue problem and two linear ones. To show the applicability and the validity of our approach, the amplitude-frequency and the amplitude loss factor relationships are illustrated for a sandwich plate with a viscoelastic central layer and a viscoelastic circular ring.
References
1.
Ditaranto
, R.
A.
, and Blasingame
,
W.
,
1967, “Composite Damping
of Vibrating Sandwich Beams
,” J. Eng. Ind.
0022-0817, 89
, pp.
633
–638
.2.
Mead
, D.
J.
, and Markus
,
S.
,
1969, “The Forced
Vibration of Three-Layer Damped Sandwich Beam With Arbitrary Boundary
Conditions
,” J. Sound Vib.
0022-460X, 10
, pp.
163
–175
.3.
Yan
, M.
J.
, and Dowell
, E.
H.
, 1972,
“Governing Equations For Vibrating Constrained-Layer Damping
Sandwich Plates and Beams
,” J. Appl. Mech.
0021-8936, 94
, pp.
1041
–1047
.4.
Oravsky
,
V.
,
Markus
,
S.
, and
Simkova
,
O.
,
1974, “New Approximate
Method of Finding the Loss Factors of a Sandwich
Cantilever
,” J. Sound Vib.
0022-460X, 33
, pp.
335
–352
.5.
Rao
, D.
K.
, 1978,
“Frequency and Loss Factors of Sandwich Beams Under Various
Boundary Conditions
,” J. Mech. Eng. Sci.
0022-2542, 20
, pp.
271
–282
.6.
Sadek
, E.
A.
, 1984,
“Dynamic Optimisation of a Sandwich Beam
,”
Comput. Struct.
0045-7949, 19
, pp.
605
–615
.7.
Cupial
,
P.
, and
Niziol
,
J.
,
1995, “Vibration and
Damping Analysis of Three-Layered Composite Plate With Viscoelastic
Mid-Layer
,” J. Sound Vib.
0022-460X,
183
, pp.
99
–114
.8.
He
, J.
F.
, and Ma
, B.
A.
, 1996,
“Vibration Analysis of Viscoelastically Damped Sandwich
Shells
,” Shock Vib. Dig.
0583-1024, 3
, pp.
403
–417
.9.
Hu
, Y.
C.
, and Huang
, S.
C.
, 2000,
“The Frequency Response and Damping Effect of Three-Layer
Thin Shell With Viscoelastic Core
,” Comput.
Struct.
0045-7949, 76
, pp.
577
–591
.10.
Kovacs
,
B.
,
2002, “Vibration
Analysis of a Damped Arch Using Iterative Laminate Model
,”
J. Sound Vib.
0022-460X, 254
, pp.
367
–378
.11.
Soni
, M.
L.
, 1981,
“Finite Element Analysis of Viscoelastically Damped Sandwich
Structures
,” Shock Vib. Dig.
0583-1024, 55
, pp.
97
–109
.12.
Ma
, B.
A.
, and He
, J.
F.
, 1992,
“A Finite Element Analysis of Viscoelastically Damped
Sandwich Plates
,” J. Sound Vib.
0022-460X, 152
, pp.
107
–123
.13.
Rikards
,
R.
,
Chate
,
A.
, and
Barkanov
,
E.
,
1993, “Finite Element
Analysis of Damping the Vibrations of Laminated Composites
,”
Comput. Struct.
0045-7949, 47
, pp.
1005
–1015
.14.
Johnson
, C.
D.
, Kienholz
, D.
A.
, and Rogers
, L.
C.
, 1981,
“Finite Element Prediction of Damping in Beams With
Constrained Viscoelastic Layer
,” Shock Vib.
Dig.
0583-1024, 51
, pp.
71
–81
.15.
Lu
, Y.
P.
, Killian
, J.
W.
, and Everstine
,
G. C.
, 1979,
“Vibrations of Three Layered Damped Sandwich Plate
Composites
,”J. Sound Vib.
0022-460X, 64
, pp.
63
–71
.16.
Sainsbury
, M.
G.
, and Zhang
, Q.
J.
, 1999,
“The Galerkin Element Method Applied to the Vibration of
Damped Sandwich Beams
,” Comput. Struct.
0045-7949, 71
, pp.
239
–256
.17.
Ramesh
, T.
C.
, and Ganesan
,
N.
,
1994, “Finite Element
Analysis of Conical Shells With a Constrained Viscoelastic
Layer
,” J. Sound Vib.
0022-460X, 171
, pp.
577
–601
.18.
Baber Thomas
,
T.
,
Maddox Richard
,
A.
, and
Orozco Carlos
,
E.
,
1998, “A Finite Element
Model For Harmonically Excited Viscoelastic Sandwich Beams
,”
Comput. Struct.
0045-7949, 66
, pp.
105
–113
.19.
Alam
,
N.
, and
Asnani
, N.
T.
, 1984,
“Vibration and Damping of Multi Layered Cylindrical Shell.
Part I and II
,” AIAA J.
0001-1452, 22
, pp.
803
–810
;Alam
,
N.
, and
Asnani
, N.
T.
, 1984,
“Vibration and Damping of Multi Layered Cylindrical Shell.
Part II
,” AIAA J.
0001-1452, 22
, pp.
975
–981
.20.
Daya
, E.
M.
, and Potier-Ferry
,
M.
,
2001, “A Numerical
Method For Nonlinear Eigenvalue Problem, Application to Vibrations of
Viscoelastic Structures
,” Comput. Struct.
0045-7949, 79
, pp.
533
–541
.21.
Chen
,
X.
,
Chen
, H.
L.
, and Le
,
H.
,
1999, “Damping
Prediction of Sandwich Structures by Order-Reduction-Iteration
Approach
,” J. Sound Vib.
0022-460X, 222
, pp.
803
–812
.22.
Daya
, E.
M.
, and Potier-Ferry
,
M.
,
2002, “A Shell Finite
Element For Viscoelastically Damped Sandwich Structures
,”
Revue Européenne des Eléments finis
, 11
,
pp. 39
–56
.23.
Lee
,
H.-H.
,
1998, “Non-Linear
Vibration of a Multilayer Sandwich Beam With Viscoelastic
Layers
,” J. Sound Vib.
0022-460X, 216
, pp.
601
–621
.24.
Daya
, E.
M.
, Azrar
,
L.
, and
Potier-Ferry
,
M.
,
2003, “An Amplitude
Equation For the Non-Linear Vibration of Viscoelastically Damped Sandwich
Beams
,” J. Sound Vib.
0022-460X, 271
, pp.
789
–813
.25.
Patel
, B.
P.
, Ganapathi
,
M.
,
Makhecha
, D.
P.
, and Shah
,
P.
,
2003, “Large Amplitude
Free Flexural Vibration of Rings Using Finite Element
Approach
,” Int. J. Non-Linear Mech.
0020-7462, 37
, pp.
911
–921
.26.
Ganapathi
,
M.
,
Patel
, B.
P.
, Boisse
,
P.
, and
Polit
,
O.
,
1999, “Flexural Loss
Factors of Sandwich and Laminated Beams Using Linear and Nonlinear Dynamic
Analysis
,” Composites, Part B
1359-8368, 30
, pp.
245
–256
.27.
Nayfeh
, A.
H.
, and Mook
, D.
T.
, 1979,
Non Linear Oscillations
,
Wiley
, New
York
.28.
Brush
, D.
O.
, and Almroth
, B.
O.
, 1975,
Buckling of Bars, Plate and Shells
,
McGraw-Hill
, New
York
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.