Abstract

In this paper, we deal with the nonlinear vibration of viscoelastic shell structures. Coupling an approximated harmonic balance method with one mode Galerkin’s procedure, one obtains an amplitude equation depending on two complex coefficients. The latter are determined by solving a classical eigenvalue problem and two linear ones. To show the applicability and the validity of our approach, the amplitude-frequency and the amplitude loss factor relationships are illustrated for a sandwich plate with a viscoelastic central layer and a viscoelastic circular ring.

References

1.
Ditaranto
,
R. A.
, and
Blasingame
,
W.
, 1967, “
Composite Damping of Vibrating Sandwich Beams
,”
J. Eng. Ind.
0022-0817,
89
, pp.
633
638
.
2.
Mead
,
D. J.
, and
Markus
,
S.
, 1969, “
The Forced Vibration of Three-Layer Damped Sandwich Beam With Arbitrary Boundary Conditions
,”
J. Sound Vib.
0022-460X,
10
, pp.
163
175
.
3.
Yan
,
M. J.
, and
Dowell
,
E. H.
, 1972, “
Governing Equations For Vibrating Constrained-Layer Damping Sandwich Plates and Beams
,”
J. Appl. Mech.
0021-8936,
94
, pp.
1041
1047
.
4.
Oravsky
,
V.
,
Markus
,
S.
, and
Simkova
,
O.
, 1974, “
New Approximate Method of Finding the Loss Factors of a Sandwich Cantilever
,”
J. Sound Vib.
0022-460X,
33
, pp.
335
352
.
5.
Rao
,
D. K.
, 1978, “
Frequency and Loss Factors of Sandwich Beams Under Various Boundary Conditions
,”
J. Mech. Eng. Sci.
0022-2542,
20
, pp.
271
282
.
6.
Sadek
,
E. A.
, 1984, “
Dynamic Optimisation of a Sandwich Beam
,”
Comput. Struct.
0045-7949,
19
, pp.
605
615
.
7.
Cupial
,
P.
, and
Niziol
,
J.
, 1995, “
Vibration and Damping Analysis of Three-Layered Composite Plate With Viscoelastic Mid-Layer
,”
J. Sound Vib.
0022-460X,
183
, pp.
99
114
.
8.
He
,
J. F.
, and
Ma
,
B. A.
, 1996, “
Vibration Analysis of Viscoelastically Damped Sandwich Shells
,”
Shock Vib. Dig.
0583-1024,
3
, pp.
403
417
.
9.
Hu
,
Y. C.
, and
Huang
,
S. C.
, 2000, “
The Frequency Response and Damping Effect of Three-Layer Thin Shell With Viscoelastic Core
,”
Comput. Struct.
0045-7949,
76
, pp.
577
591
.
10.
Kovacs
,
B.
, 2002, “
Vibration Analysis of a Damped Arch Using Iterative Laminate Model
,”
J. Sound Vib.
0022-460X,
254
, pp.
367
378
.
11.
Soni
,
M. L.
, 1981, “
Finite Element Analysis of Viscoelastically Damped Sandwich Structures
,”
Shock Vib. Dig.
0583-1024,
55
, pp.
97
109
.
12.
Ma
,
B. A.
, and
He
,
J. F.
, 1992, “
A Finite Element Analysis of Viscoelastically Damped Sandwich Plates
,”
J. Sound Vib.
0022-460X,
152
, pp.
107
123
.
13.
Rikards
,
R.
,
Chate
,
A.
, and
Barkanov
,
E.
, 1993, “
Finite Element Analysis of Damping the Vibrations of Laminated Composites
,”
Comput. Struct.
0045-7949,
47
, pp.
1005
1015
.
14.
Johnson
,
C. D.
,
Kienholz
,
D. A.
, and
Rogers
,
L. C.
, 1981, “
Finite Element Prediction of Damping in Beams With Constrained Viscoelastic Layer
,”
Shock Vib. Dig.
0583-1024,
51
, pp.
71
81
.
15.
Lu
,
Y. P.
,
Killian
,
J. W.
, and
Everstine
,
G. C.
, 1979, “
Vibrations of Three Layered Damped Sandwich Plate Composites
,”
J. Sound Vib.
0022-460X,
64
, pp.
63
71
.
16.
Sainsbury
,
M. G.
, and
Zhang
,
Q. J.
, 1999, “
The Galerkin Element Method Applied to the Vibration of Damped Sandwich Beams
,”
Comput. Struct.
0045-7949,
71
, pp.
239
256
.
17.
Ramesh
,
T. C.
, and
Ganesan
,
N.
, 1994, “
Finite Element Analysis of Conical Shells With a Constrained Viscoelastic Layer
,”
J. Sound Vib.
0022-460X,
171
, pp.
577
601
.
18.
Baber Thomas
,
T.
,
Maddox Richard
,
A.
, and
Orozco Carlos
,
E.
, 1998, “
A Finite Element Model For Harmonically Excited Viscoelastic Sandwich Beams
,”
Comput. Struct.
0045-7949,
66
, pp.
105
113
.
19.
Alam
,
N.
, and
Asnani
,
N. T.
, 1984, “
Vibration and Damping of Multi Layered Cylindrical Shell. Part I and II
,”
AIAA J.
0001-1452,
22
, pp.
803
810
;
Alam
,
N.
, and
Asnani
,
N. T.
, 1984, “
Vibration and Damping of Multi Layered Cylindrical Shell. Part II
,”
AIAA J.
0001-1452,
22
, pp.
975
981
.
20.
Daya
,
E. M.
, and
Potier-Ferry
,
M.
, 2001, “
A Numerical Method For Nonlinear Eigenvalue Problem, Application to Vibrations of Viscoelastic Structures
,”
Comput. Struct.
0045-7949,
79
, pp.
533
541
.
21.
Chen
,
X.
,
Chen
,
H. L.
, and
Le
,
H.
, 1999, “
Damping Prediction of Sandwich Structures by Order-Reduction-Iteration Approach
,”
J. Sound Vib.
0022-460X,
222
, pp.
803
812
.
22.
Daya
,
E. M.
, and
Potier-Ferry
,
M.
, 2002, “
A Shell Finite Element For Viscoelastically Damped Sandwich Structures
,”
Revue Européenne des Eléments finis
,
11
, pp.
39
56
.
23.
Lee
,
H.-H.
, 1998, “
Non-Linear Vibration of a Multilayer Sandwich Beam With Viscoelastic Layers
,”
J. Sound Vib.
0022-460X,
216
, pp.
601
621
.
24.
Daya
,
E. M.
,
Azrar
,
L.
, and
Potier-Ferry
,
M.
, 2003, “
An Amplitude Equation For the Non-Linear Vibration of Viscoelastically Damped Sandwich Beams
,”
J. Sound Vib.
0022-460X,
271
, pp.
789
813
.
25.
Patel
,
B. P.
,
Ganapathi
,
M.
,
Makhecha
,
D. P.
, and
Shah
,
P.
, 2003, “
Large Amplitude Free Flexural Vibration of Rings Using Finite Element Approach
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
911
921
.
26.
Ganapathi
,
M.
,
Patel
,
B. P.
,
Boisse
,
P.
, and
Polit
,
O.
, 1999, “
Flexural Loss Factors of Sandwich and Laminated Beams Using Linear and Nonlinear Dynamic Analysis
,”
Composites, Part B
1359-8368,
30
, pp.
245
256
.
27.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Non Linear Oscillations
,
Wiley
,
New York
.
28.
Brush
,
D. O.
, and
Almroth
,
B. O.
, 1975,
Buckling of Bars, Plate and Shells
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.