A combined experimental and analytical approach is used to study damage initiation and evolution in three-dimensional second phase particle fields. A three-dimensional formulation of a damage percolation model is developed to predict damage nucleation and propagation through random-clustered second phase particle fields. The proposed approach is capable of capturing the three-dimensional character of damage phenomena and the three stages of ductile fracture, namely, void nucleation, growth, and coalescence, at the level of discrete particles. An in situ tensile test with X-ray tomography is utilized to quantify material damage during deformation in terms of the number of nucleated voids and porosity. The results of this experiment are used for both the development of a clustering-sensitive nucleation criterion and the validation of the damage percolation predictions. The evolution of damage in aluminum alloy AA5182 has been successfully predicted to match that in the in situ tensile specimen. Two forms of second phase particle field input data were considered: (1) that measured directly with X-ray tomography and (2) fields reconstructed statistically from two-dimensional orthogonal sections. It is demonstrated that the adoption of a cluster-sensitive void nucleation criterion, as opposed to a cluster-insensitive nucleation criterion, has a significant effect in promoting predicted void nucleation to occur within particle clusters. This behavior leads to confinement of void coalescence to within clusters for most of the duration of deformation followed by later development of a macrocrack through intracluster coalescence. The measured and reconstructed second phase particle fields lead to similar rates of predicted damage accumulation and can be used interchangeably in damage percolation simulations.

1.
Brown
,
L. M.
, and
Embury
,
J. D.
, 1973, “
The Initiation and Growth of Voids at Second Phase Particles
,”
Proceedings of the Conference on Microstructure and Design of Alloys
,
Institute of Metals and Iron and Steel Institute
,
London
, Vol.
1
, pp.
164
169
.
2.
Tonks
,
D. L.
, 1994, “
Percolation Wave Propagation and Void Link-Up Effects in Ductile Fracture
,”
J. Phys. IV
1155-4339,
4
, pp.
665
670
.
3.
Gurson
,
A. L.
, 1977, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
, pp.
2
15
. 0094-4289
4.
Tvergaard
,
V.
, and
Needleman
,
A.
, 1984, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
0001-6160,
32
, pp.
157
169
.
5.
Rousselier
,
G.
, 1987, “
Ductile Fracture Models and Their Potential in Local Approach of Fracture
,”
Nucl. Eng. Des.
0029-5493,
105
, pp.
97
111
.
6.
Gologanu
,
M.
,
Leblond
,
J. B.
, and
Devaux
,
J.
, 1994, “
Approximate Models for Ductile Metals Containing Non-Spherical Voids—Case of Axisymmetric Oblate Ellipsoidal Cavities
,”
ASME J. Eng. Mater. Technol.
0094-4289,
116
, pp.
290
297
.
7.
Gologanu
,
M.
,
Leblond
,
J. B.
, and
Devaux
,
J.
, 1993, “
Approximate Models for Ductile Metals Containing Non-Spherical Voids—Case of Axisymmetric Prolate Ellipsoidal Cavities
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
1723
1754
.
8.
Tvergaard
,
V.
, and
Niordoson
,
C.
, 2004, “
Non Local Plasticity Effects on Interaction of Different Size Voids
,”
Int. J. Plast.
0749-6419,
20
, pp.
107
120
.
9.
Bonfoh
,
N.
,
Lipinski
,
P.
,
Carmasol
,
A.
, and
Tiem
,
S.
, 2004, “
Micromechanical Modelling of Ductile Damage of Polycrystalline Materials With Heterogeneous Particles
,”
Int. J. Plast.
,
20
, pp.
85
106
. 0749-6419
10.
Stauffer
,
D.
, 1985,
Introduction to Percolation Theory
,
Taylor & Francis
,
London, UK
.
11.
Worswick
,
M. J.
,
Plikey
,
A. K.
,
Thomson
,
C. I. A.
,
Lloyd
,
D. J.
, and
Burger
,
G.
, 1998, “
Percolation Damage Predictions Based on Measured Second Phase Particle Distributions
,”
Microstruct. Sci.
0361-1213,
26
, pp.
507
514
.
12.
Worswick
,
M. J.
,
Pilkey
,
A. K.
, and
Lalbin
,
X.
, 2000, “
Introduction of Material Length Scale Through Damage Percolation Modelling
,”
Proceedings of the 2000 International Conference on Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena
, Albuquerque, NM.
13.
Worswick
,
M. J.
,
Chen
,
Z. T.
,
Pilkey
,
A. K.
,
Lloyd
,
D. J.
, and
Court
,
S.
, 2001, “
Damage Characterization and Damage Percolation Modeling in Aluminum Alloy Sheet
,”
Acta Mater.
,
49
, pp.
2791
2803
. 1359-6454
14.
Chen
,
Z. T.
,
Worswick
,
M. J.
,
Cinotti
,
N.
,
Pilkey
,
A. K.
, and
Lloyd
,
D. J.
, 2003, “
A Linked FEM-Damage Percolation Model of Aluminum Alloy Sheet Forming
,”
Int. J. Plast.
0749-6419,
19
, pp.
2099
2120
.
15.
Rogers
,
H. C.
, 1960, “
The Tensile Fracture of Ductile Metals
,”
Trans. Metall. Soc. AIME
,
218
, pp.
498
506
. 0543-5722
16.
Beachem
,
C. D.
, 1963, “
An Electron Fractographic Study of the Influence of Plastic Strain Conditions Upon Ductile Rupture Processes in Metals
,”
Transactions of the American Society of Metals
,
56
, pp.
318
326
.
17.
Rosenfield
,
A. R.
, 1968, “
Criteria for Ductile Fracture of Two-Phase Alloys
,”
Metall. Rev.
0076-6690,
13
, pp.
29
40
.
18.
Cinotti
,
N.
,
Shakeri
,
H.
,
Worswick
,
M. J.
,
Finn
,
M. J.
,
Jain
,
M.
, and
Lloyd
,
D. J.
, 2000, “
Stretch Flange Formability of Aluminum Alloy Sheet
,”
Proceedings of Plasticity 2000 Conference
, Whistler, Canada.
19.
Orlov
,
O. S.
, 2006, “
A Three-Dimensional Damage Percolation Model
,“ Ph.D. thesis, University of Waterloo, Waterloo, Canada.
20.
Orlov
,
O. S.
,
Worswick
,
M. J.
,
Winkler
,
S. L.
,
Maire
,
E.
, and
Lloyd
,
D. J.
, 2008, “
Characterization and Reconstruction of Three-Dimensional Second Phase Particle Fields Within Aluminum Alloy AA5182
,” in preparation.
21.
Thomson
,
C. I. A.
, 2001, “
Modelling the Effects of Particle Clustering on Ductile Failure
,” Ph.D. thesis, Carleton University, Ottawa, Canada.
22.
Thomason
,
P. F.
, 1990,
Ductile Fracture of Metals
,
Pergamon
,
Headington Hill Hall
,
Oxford, UK
.
23.
Pilkey
,
A. K.
,
Worswick
,
M. J.
,
Thomson
,
C. I. A.
,
Burger
,
G.
, and
Lloyd
,
D. J.
, 1998, “
Effect of Second Phase Particle Distribution on the Formability of Al-Si Sheet
,”
Advances in Industrial Materials
,
The Metallurgical Society of CIM
,
Montreal
.
24.
Maire
,
E.
,
Buffiere
,
J. Y.
,
Salvo
,
L.
,
Blandin
,
J. J.
,
Ludwig
,
W.
, and
Letang
,
J. M.
, 2001, “
On the Application of X-Ray Tomography in the Field of Materials Science
,”
Adv. Eng. Mater.
1438-1656,
3
, pp.
539
546
.
25.
Smerd
,
R.
,
Winkler
,
S.
,
Salisbury
,
C.
,
Worswick
,
M. J.
,
Lloyd
,
D. J.
, and
Finn
,
M. J.
, 2005, “
High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
541
560
.
26.
Gurson
,
A. L.
, 1975, “
Plastic Flow and Fracture Behaviour of Ductile Materials Incorporating Void Nucleation, Growth, and Interaction
,” Ph.D. thesis, Brown University, Providence, RI.
27.
Cox
,
T. B.
, and
Low
,
J. R.
, Jr.
, 1974, “
An Investigation of the Plastic Fracture of AISI 4340 and 18 Nickel-200 Grade Maraging Steels
,”
Metall. Trans.
0026-086X,
5
, pp.
1457
1470
.
28.
Tanaka
,
K.
,
Mori
,
T.
, and
Nakamura
,
T.
, 1970, “
Cavity Formation at the Interface of a Spherical Inclusion in a Plastically Deformed Matrix
,”
Philos. Mag.
,
21
, pp.
267
279
. 1478-6435
29.
Van Stone
,
R. H.
,
Cox
,
T. B.
,
Low
,
J. R.
, Jr.
, and
Psioda
,
J. A.
, 1985, “
Microstructural Aspects of Fracture by Dimpled Fracture
,”
Int. Met. Rev.
0308-4590,
30
, pp.
157
179
.
30.
Gurland
,
J.
, 1972, “
Observations on the Fracture of Cementite Particles in a Spheroidized 1.05% C Steel Deformed at Room Temperature
,”
Acta Metall.
,
20
, pp.
735
741
. 0001-6160
31.
Hallquist
,
J. O.
, 1998,
LS-DYNA Theoretical Manual
,
Livermore Software Technology Corporation
,
Livermore, CA
.
You do not currently have access to this content.