Theoretical and experimental studies have shown that stress triaxiality is the key parameter controlling the magnitude of the fracture strain. Smooth and notched round bar specimens are mostly often used to quantify the effect of stress triaxiality on ductile fracture strain. There is a mounting evidence (Bai and Wierzbicki, 2008, “A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence,” Int. J. Plast., 24(6), pp. 1071–1096) that, in addition to the stress triaxiality, the normalized third deviatoric stress invariant (equivalent to the Lode angle parameter) should also be included in characterization of ductile fracture. The calibration using round notched bars covers only a small range of possible stress states. Plane strain fracture tests provide additional important data. Following Bridgman’s stress analysis inside the necking of a plane strain specimen, a closed-form solution is derived for the stress triaxiality inside the notch of a flat-grooved plane strain specimen. The newly derived formula is verified by finite element simulations. The range of stress triaxiality in round notched bars and flat-grooved specimens is similar, but the values of the Lode angle parameter are different. These two groups of tests are therefore very useful in constructing a general 3D fracture locus. The results of experiments and numerical simulations on 1045 and DH36 steels have proved the applicability of the closed-form solution and have demonstrated the effect of the Lode angle parameter on the fracture locus.

1.
McClintock
,
F. A.
, 1968, “
A Criterion of Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
, pp.
363
371
. 0021-8936
2.
Rice
,
J. R.
, and
Tracey
,
D. M.
, 1969, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
0022-5096,
17
, pp.
201
217
.
3.
Hancock
,
J. W.
, and
Mackenzie
,
A. C.
, 1976, “
On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-Axial Stress-States
,”
J. Mech. Phys. Solids
0022-5096,
24
(
2–3
), pp.
147
160
.
4.
Mackenzie
,
A. C.
,
Hancock
,
J. W.
, and
Brown
,
D. K.
, 1977, “
On the Influence of State of Stress on Ductile Failure Initiation in High Strength Steels
,”
Eng. Fract. Mech.
0013-7944,
9
(
1
), pp.
167
168
.
5.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1985, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
0013-7944,
21
(
1
), pp.
31
48
.
6.
Bao
,
Y.
, 2003, “
Prediction of Ductile Crack Formation in Uncracked Bodies
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge.
7.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
8.
Xu
,
B.
, and
Liu
,
X.
, 1995,
Applied Mechanics: Elasticity and Plasticity
,
Tsinghua University Press
,
Beijing, China
.
9.
2005, ABAQUS User’s Manual, Version 6.5, Hilbbit, Karlsson and Sorensen Inc.
10.
Wierzbicki
,
T.
, and
Xue
,
L.
, 2005, “
On the Effect of the Third Invariant of the Stress Deviator on Ductile Fracture
,” Impact and Crashworthiness Laboratory, Technical Report No. 136.
11.
Bai
,
Y.
, and
Wierzbicki
,
T.
, 2008, “
A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence
,”
Int. J. Plast.
,
24
(
6
), pp.
1071
1096
. 0749-6419
12.
Bridgman
,
P. W.
, 1952,
Studies in Large Plastic Flow and Fracture
,
McGraw-Hill
,
New York
.
13.
Teng
,
X.
, and
Wierzbicki
,
T.
, 2006, “
Evaluation of Six Fracture Models in High Velocity Perforation
,”
Eng. Fract. Mech.
0013-7944,
73
(
12
), pp.
1653
1678
.
14.
Bao
,
Y.
, and
Wierzbicki
,
T.
, 2004, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
0020-7403,
46
(
1
), pp.
81
98
.
15.
Bao
,
Y.
, and
Wierzbicki
,
T.
, 2005, “
On the Cut-Off Value of Negative Triaxiality for Fracture
,”
Eng. Fract. Mech.
,
72
(
7
), pp.
1049
1069
. 0013-7944
16.
Wierzbicki
,
T.
,
Bao
,
Y.
,
Lee
,
Y. W.
, and
Bai
,
Y.
, 2005, “
Calibration and Evaluation of Seven Fracture Models
,”
Int. J. Mech. Sci.
0020-7403,
47
(
4–5
), pp.
719
743
.
17.
Xue
,
L.
, 2007, “
Damage Accumulation and Fracture Initiation in Uncracked Ductile Solids Subject to Triaxial Loading
,”
Int. J. Solids Struct.
0020-7683,
44
(
16
), pp.
5163
5181
.
18.
Wilkins
,
M. L.
,
Streit
,
R. D.
, and
Reaugh
,
J. E.
, 1980, “
Cumulative-Strain-Damage Model of Ductile Fracture: Simulation and Prediction of Engineering Fracture Tests
,” Lawrence Livermore Laboratory, Technical Report No. UCRL-53058.
19.
Hopperstad
,
O. S.
,
Borvik
,
T.
,
Langseth
,
M.
,
Labibes
,
K.
, and
Albertini
,
C.
, 2003, “
On the Influence of Stress Triaxiality and Strain Rate on the Behaviour of a Structural Steel. Part I. Experiments
,”
Eur. J. Mech. A/Solids
,
22
(
1
), pp.
1
13
. 0002-7820
20.
Clausing
,
D. P.
, 1970, “
Effect of Plastic Strain State on Ductility and Toughness
,”
Int. J. Fract. Mech.
,
6
, pp.
71
85
. 0020-7268
21.
Hancock
,
J. W.
, and
Brown
,
D. K.
, 1983, “
On the Role of Strain and Stress State in Ductile Failure
,”
J. Mech. Phys. Solids
0022-5096,
31
(
1
), pp.
1
24
.
22.
Wierzbicki
,
T.
, and
Bao
,
Y.
, 2004,
Bridgman Revisited: On the History Effect on Ductile Fracture
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
23.
Lindholm
,
U. S.
,
Nagy
,
A.
,
Johnson
,
G. R.
, and
Hoegfeldt
,
J. M.
, 1980, “
Large Strain, High Strain Rate Testing of Copper
,”
ASME J. Eng. Mater. Technol.
0094-4289,
102
, pp.
376
381
.
24.
White
,
C. S.
,
Bronkhorst
,
C. A.
, and
Anand
,
L.
, 1990, “
An Improved Isotropic-Kinematic Hardening Model for Moderate Deformation Metal Plasticity
,”
Mech. Mater.
0167-6636,
10
(
1–2
), pp.
127
147
.
25.
Borvik
,
T.
,
Hopperstad
,
O. S.
, and
Berstad
,
T.
, 2003, “
On the Influence of Stress Triaxiality and Strain Rate on the Behaviour of a Structural Steel. Part II. Numerical Study
,”
Eur. J. Mech. A/Solids
,
22
(
1
), pp.
15
32
. 0002-7820
26.
Bai
,
Y.
, and
Wierzbicki
,
T.
, 2008, “
Application of Mohr–Coulomb Criterion to Ductile Fracture
,” unpublished.
27.
Bai
,
Y.
, 2007, “
Effect of Loading History on Necking and Fracture
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge.
28.
Bai
,
Y.
,
Bao
,
Y.
, and
Wierzbicki
,
T.
, 2006, “
Fracture of Prismatic Aluminum Tubes Under Reverse Straining
,”
Int. J. Impact Eng.
,
32
(
5
), pp.
671
701
. 0734-743X
You do not currently have access to this content.