Two-phase PZT-epoxy piezoelectric composites and three phase PZT-epoxy-Al composites were fabricated using a poling voltage of 0.2 kV/mm. The influence of aluminum inclusion size (nano and micron) and (lead zirconate titanate) PZT volume fraction on the dielectric properties of the three phase PZT-epoxy-aluminum composites were experimentally investigated. In general, dielectric and piezoelectric properties of the PZT-epoxy matrix were improved with the addition of aluminum particles. Composites that were comprised of micron scale aluminum inclusions demonstrated higher piezoelectric d33-strain-coefficients, and higher dielectric loss compared to composites that were comprised of nanosize aluminum inclusions. Specifically, composites comprised of micron sized aluminum particles and PZT volume fractions of 20%, 30%, and 40% had dielectric constants equal to 405.7, 661.4, and 727.8 (pC/N), respectively, while composites comprised of nanosize aluminum particles with the same PZT volume fractions, had dielectric constants equal to 233.28, 568.81, and 657.41 (pC/N), respectively. The electromechanical properties of the composites are influenced by several factors: inclusion agglomeration, contact resistance between particles, and air voids. These composites may be useful for several applications: structural health monitoring, energy harvesting, and acoustic liners.

References

1.
Bai
,
Y.
,
Cheng
,
Z. Y.
,
Bharti
,
V.
,
Xu
,
H. S.
, and
Zhang
,
Q. M.
, 2000, “
High-Dielectric-Constant Ceramic-Powder Polymer Composites
,”
Appl. Phys. Lett.
,
76
(
25
), p.
3804
3807
.
2.
Kuo
,
D. H.
,
Chang
,
C. C.
,
Su
,
T. Y.
,
Wang
,
W. K.
, and
Lin
,
B. Y.
, 2001, “
Dielectric Behaviours of Multi-Doped BaTiO3/Epoxy Composites
,”
J. Eur. Ceram. Soc.
,
21
, pp.
1171
1177
.
3.
Funer
,
R.
, 2002, “
Embedding Resistors and Capacitors
,”
Printed Circuit Des.
,
19
(
12
), p.
8
.
4.
Ulrich
,
R.
, 2004, “
Matching Embedded Capacitor Dielectrics to Applications
,”
Circiut World
,
30
(
1
), p.
20
.
5.
Bhattacharya
,
S. K.
, and
Tummala
,
R. R.
, 2000, “
Next Generation Integral Passives: Materials, Processes, and Integration of Resistors and Capacitors on PWB Substrates
,”
J. Mater. Sci.: Mater. Electron.
,
11
(
3
), pp.
253
268
.
6.
Bhattacharya
,
S. K.
, and
Tummala
,
R. R.
, 2002, “
Epoxy Nanocomposite Capacitors for Application as MCM-L Compatible Integral Passives
,”
ASME J. Electron. Packag.
,
124
(
1
), pp.
1
6
.
7.
Choi
,
H. W.
,
Heo
,
Y. W.
,
Lee
,
J. H.
,
Kim
,
J. J.
,
Lee
,
H. Y.
,
Park
,
E. T.
, and
Chung
,
Y. K.
, 2006, “
Effects of BaTiO3 on Dielectric Behavior of BaTiO3-Ni-Polymethyl Methacrylate Composites
,”
Appl. Phys. Lett.
,
89
(
13
),
132910
.
8.
Choi
,
H. W.
,
Heo
,
Y. W.
,
Lee
,
J. H.
,
Kim
,
J. J.
,
Lee
,
H. Y.
,
Park
,
E. T.
, and
Chung
,
Y. K.
, 2007, “
Effects of Ni Particle Size on Dielectric Properties of PMMA-Ni-BaTiO3 Composites
,”
Integr. Ferroelectr.
,
87
, p.
85
.
9.
Kim
,
H.
,
Sun
,
B. K.
, and
Kim
,
J.
, 2004, “
Suppression of GHz Range Power/ Ground Inductive Impedance and Simultaneous Switching Noise Using Embedded Film Capacitors in Multilayer Packages and PCBs
,”
IEEE Compon. Lett.
,
14
(
2
), p.
71
.
10.
Li
,
L.
,
Takahashi
,
A.
,
Hao
,
J. J.
,
Kikuchi
,
R.
,
Hayakawa
,
T.
,
Tsurumi
,
T. A.
, and
Kakimoto
,
M. A.
, 2005, “
Novel Polymer-Ceramic Nanocomposite Based on New Concepts for Embedded Capacitor Application (I)
.
IEEE Trans. Compon. Packag. Technol.
,
28
(
4
), p.
754
.
11.
Ogitani
,
S.
,
Bidstrup-Allen
,
S. A.
, and
Kohl
,
P. A.
, 2000, “
Factors Influencing the Permittivity of Polymer/Ceramic Composites for Embedded Capacitors
,”
IEEE Trans. Adv. Packag.
,
23
(
2
), pp.
313
322
.
12.
Rao
,
Y.
, and
Wong
,
C. P.
, 2004, “
Material Characterization of a High-Dielectric-Constant Polymer-Ceramic Composite for Embedded Capacitor for RF Applications
,”
J. Appl. Polym. Sci.
,
92
(
4
), pp.
2228
2231
.
13.
Cai
,
L. F.
,
Mai
,
Y. L.
,
Rong
,
M. Z.
,
Ruan
,
W. H.
, and
Zhang
,
M. Q.
, 2007, “
Interfacial Effects in Nano-Silica/Polypropylene Composites Fabricated by In-Situ Chemical Blowing
,”
eXPRESS Polym. Lett.
,
1
(
1
), pp.
2
7
.
14.
Nan
,
C. W.
,
Li
,
M.
, and
Huang
,
J. H.
, 2001, “
Calculations of Giant Magnetoelectric Effects in Ferroic Composites of Rare-Earth-Iron Alloys and Ferroelectric Polymers
,”
Phys. Rev. B
,
63
(
14
),
144415
.
15.
Nan
,
C.-W.
,
Liu
,
L.
,
Cai
,
N.
,
Zhai
,
J.
,
Ye
,
Y.
,
Lin
,
Y. H.
,
Dong
,
L. J.
, and
Xiong
,
C. X.
, 2002, “
A Three-Phase Magnetoelectric Composite of Piezoelectric Ceramics, Rare-Earth Iron Alloys, and Polymer
,”
Appl. Phys. Lett.
,
81
(
20
), pp.
3831
3834
.
16.
Qi
,
L.
,
Lee
,
B. I.
,
Samuels
,
W. D.
,
Exarhos
,
G. J.
, and
Sam
J.
,
Parler
,
G.
, 2006, “
Three-Phase Percolative Silver–BaTiO3–Epoxy Nanocomposites With High Dielectric Constants
,”
J. Appl. Polym. Sci.
,
102
, pp.
967
971
.
17.
Ho
,
C. H.
,
Poon
,
Y. M.
, and
Shin
,
F. G.
, 2006, “
New Explicit Formulas for the Effective Piezoelectric Coefficients of Binary 0-3 Composites
,”
J. Electroceram.
,
16
, pp.
283
288
.
18.
Newnham
,
R. E.
,
Skinner
,
D. P.
,
Klicker
,
K. A.
,
Bhalla
,
A. S.
,
Hardiman
,
B.
, and
Gururaja
,
T. R.
, 1980, “
Ferroelectric Ceramic-Plastic Composites for Piezoelectric and Pyroelectric Applications
,”
Ferroelectrics
,
27
(
1–4
), pp.
49
55
.
19.
Ma
,
M.
, and
Wang
,
X. D.
, 2009, “
Preparation, Microstructure and Properties of Epoxy-Based Composites Containing Carbon Nanotubes and PMN-PZT Piezoceramics as Rigid Piezo-Damping Materials
,”
Mater. Chem. Phys.
,
116
(
1
), pp.
191
197
.
20.
Tian
,
S.
, and
Wang
,
X. D.
, 2008, “
Fabrication and Performances of Epoxy/Multi-Walled Carbon Nanotubes/Piezoelectric Ceramic Composites as Rigid Piezo-Damping Materials
,”
J. Mater. Sci.
,
43
(
14
), pp.
4979
4987
.
21.
Tsantzalis
,
S.
,
Karapappas
,
P.
,
Vavouliotis
,
A.
,
Tsotra
,
P.
,
Paipetis
,
A.
,
Kostopoulos
,
V.
, and
Friedrich
,
K.
, 2007, “
Enhancement of the Mechanical Performance of an Epoxy Resin and Fiber Reinforced Epoxy Resin Composites by the Introduction of CNF and PZT Particles at the Microscale
,”
Composites, Part A
,
38
(
4
), pp.
1076
1081
.
22.
Doyle
,
W. T.
, and
Jacobs
,
I. S.
, 1992, “
The Influence of Particle Shape on Dielectric Enhancement in Metal-Insulator Composites
,”
J. Appl. Phys.
,
71
(
8
), pp.
3926
3937
.
23.
Yao
,
S.-H.
,
Dang
,
Z.-M.
,
Jiang
,
M.-J.
, and
Bai
,
J.
, 2008, “
BaTiO3-Carbon Nanotube/Polyvinylidene Fluoride Three-Phase Composites With High Dielectric Constant and Low Dielectric Loss
,”
Appl. Phys. Lett.
,
93
(
18
),
182905
.
24.
Choi
,
H.-W.
,
Heo
,
Y.-W.
,
Lee
,
J.-H.
,
Kim
,
J.-J.
,
Lee
,
H.-Y.
,
Park
,
E.-T.
, and
Chung
,
Y.-K.
, 2006, “
Effects of BaTiO3 on Dielectric Behavior of BaTiO3-Ni-Polymethyl Methacrylate Composites
,”
Appl. Phys. Lett.
,
89
(
13
),
132910
.
25.
Choi
,
H.-W.
,
Heo
,
Y.-W.
,
Lee
,
J.-H.
,
Kim
,
J.-J.
,
Lee
,
H.-Y.
,
Park
,
E.-T.
, and
Chung
,
Y.-K.
, 2006, “
Effects of BaTiO3 on Dielectric Behavior of BaTiO3-Ni-Polymethyl Methacrylate Composites
,”
Appl. Phys. Lett.
,
89
(
13
),
132910
.
26.
Hori
,
M.
,
Aoki
,
T.
,
Ohira
,
Y.
, and
Yano
,
S.
, 2001, “
New Type of Mechanical Damping Composites Composed of Piezoelectric Ceramics, Carbon Black and Epoxy Resin
,”
Composites, Part A
,
32
(
2
), pp.
287
290
.
27.
Dang
,
Z. M.
,
Shen
,
Y.
, and
Nan
,
C.
W., 2002, “
Dielectric Behavior of Three-Phase Percolative Ni-BaTiO3 Polyvinylidenmne Fluoride Composites
,”
Appl. Phys. Lett.
,
81
(
25
), pp.
4814
4817
.
28.
Miller
,
S. G.
, 2008,
Effects of Nanoparticle and Matrix Interphase on Nanocomposite Properties
,
The Graduate Faculty of The University of Akron
,
University of Akron
, p.
191
, Akron, OH.
29.
Ahmad
,
Z.
,
Prasad
,
A.
, and
Prasad
,
K.
, 2009, “
A Comparative Approach to Predicting Effective Dielectric, Piezoelectric and Elastic Properties of PZT/PVDF Composites
,”
Physica B
,
404
(
20
), pp.
3637
3644
.
30.
Dang
,
Z. M.
,
Fan
,
L. Z.
,
Shen
,
Y.
, and
Nan
,
C. W.
, 2003, “
Dielectric Behavior of Novel Three-Phase MWNTs/BaTiO3/PVDF Composites
,”
Mater. Sci. Eng., B
,
103
(
2
), pp.
140
144
.
31.
Huang
,
C.
,
Zhang
,
Q. M.
,
deBotton
,
G.
, and
Bhattacharya
,
K.
, 2004, “
All-Organic Dielectric-Percolative Three-Component Composite Materials With High Electromechanical Response
,”
Appl. Phys. Lett.
,
84
(
22
), pp.
4391
4394
.
32.
Venkatragavaraj
,
E.
,
Satish
,
B.
,
Vinod
,
P. R.
, and
Vijaya
,
M. S.
, 2001, “
Piezoelectric Properties of Ferroelectric PZT-Polymer Composites
,”
J. Phys. D
,
34
(
4
), p.
487
.
33.
Burianova
,
L.
,
Hana
,
P.
,
Panos
,
S.
,
Kulek
,
J.
, and
Tyagur
,
Y. I.
, 2000, “
Piezoelectric, Dielectric and Pyroelectric Properties of 0-3 Ceramic-Polymer Composites
,”
Ferroelectrics
,
241
(
1–4
), pp.
59
66
.
You do not currently have access to this content.