The mechanical and thermal behavior of small volume metallic compounds on the fast transient time are addressed in this work through developing a thermodynamically consistent nonlocal framework. In this regard, an enhanced gradient plasticity theory is coupled with the application of the micromorphic approach to the temperature variable. The yield function of the VA–FCC (Voyiadjis Abed Face Centered Cubic) model based on the concept of thermal activation energy and the dislocations interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which provided the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the nonlocal evolution of temperature is addressed by incorporating the microstructural interaction effect in the fast transient process using two time scales in the microscopic heat equation.

References

1.
Chen
,
X.
,
Ogasawara
,
N.
,
Zhao
,
M. H.
, and
Chiba
,
N.
,
2007
, “
On the Uniqueness of Measuring Elastoplastic Properties From Indentation: The Indistinguishable Mystical Materials
,”
J. Mech. Phys. Solids
,
55
(
8
), pp.
1618
1660
.10.1016/j.jmps.2007.01.010
2.
Espinosa
,
H. D.
,
Prorok
,
B. C.
, and
Peng
,
B.
,
2004
, “
Plasticity Size Effects in Free-Standing Submicron Polycrystalline FCC Films Subjected to Pure Tension
,”
J. Mech. Phys. Solids
,
52
(
3
), pp.
667
689
.10.1016/j.jmps.2003.07.001
3.
Vlassak
,
J. J.
,
Xiang
,
Y.
, and
Chen
,
X.
,
2005
, “
Plane-Strain Bulge Test for Thin Films
,”
J. Mater. Res.
,
20
(
9
), pp.
2360
2370
.10.1557/jmr.2005.0313
4.
Narayan
,
J.
,
Godbole
, V
. P.
, and
White
,
C. W.
,
1991
, “
Laser Method for Synthesis and Processing of Continuous Diamond Films on Nondiamond Substrates
,”
Science
,
252
(
5004
), pp.
416
418
.10.1126/science.252.5004.416
5.
Sze
,
S. M.
, and
Ng
,
K. K.
,
2007
,
Physics of Semiconductor Devices
, 3rd ed.,
Wiley-Interscience
,
Hoboken, NJ.
6.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
1999
, “
Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density
,”
Acta Mater.
,
47
(
5
), pp.
1597
1611
.10.1016/S1359-6454(99)00020-8
7.
Niordson
,
C. F.
, and
Hutchinson
,
J. W.
,
2003
, “
Non-Uniform Plastic Deformation of Micron Scale Objects
,”
Int. J. Numer. Methods Eng.
,
56
(
7
), pp.
961
975
.10.1002/nme.593
8.
Joshi
,
A. A.
, and
Majumdar
,
A.
,
1993
, “
Transient Ballistic and Diffusive Phonon Heat-Transport in Thin-Films
,”
J. Appl. Phys.
,
74
(
1
), pp.
31
39
.10.1063/1.354111
9.
Torii
,
S.
, and
Yang
,
W. J.
,
2005
, “
Heat Transfer Mechanisms in Thin Film With Laser Heat Source
,”
Int. J. Heat Mass Transfer
,
48
(
3–4
), pp.
537
544
.10.1016/j.ijheatmasstransfer.2004.09.011
10.
Tzou
,
D. Y.
,
1995
, “
Experimental Support for the Lagging Behavior in Heat Propagation
,”
J. Thermophys. Heat Transfer
,
9
(
4
), pp.
686
693
.10.2514/3.725
11.
Fujimoto
,
J. G.
,
Liu
,
J. M.
,
Ippen
,
E. P.
, and
Bloembergen
,
N.
,
1984
, “
Femtosecond Laser Interaction With Metallic Tungsten and Nonequilibrium Electron and Lattice Temperatures
,”
Phys. Rev. Lett.
,
53
(
19
), pp.
1837
1840
.10.1103/PhysRevLett.53.1837
12.
Brorson
,
S. D.
,
Kazeroonian
,
A.
,
Moodera
,
J. S.
,
Face
,
D. W.
,
Cheng
,
T. K.
,
Ippen
,
E. P.
,
Dresselhaus
,
M. S.
, and
Dresselhaus
,
G.
,
1990
, “
Femtosecond Room-Temperature Measurement of the Electron-Phonon Coupling Constant-Lambda in Metallic Superconductors
,”
Phys. Rev. Lett.
,
64
(
18
), pp.
2172
2175
.10.1103/PhysRevLett.64.2172
13.
Elsayed-Ali
,
H. E.
,
Juhasz
,
T.
,
Smith
,
G. O.
, and
Bron
,
W. E.
,
1991
, “
Femtosecond Thermoreflectivity and Thermotransmissivity of Polycrystalline and Single-Crystalline Gold-Films
,”
Phys. Rev. B
,
43
(
5
), pp.
4488
4491
.10.1103/PhysRevB.43.4488
14.
Groeneveld
,
R. H. M.
,
Sprik
,
R.
, and
Lagendijk
,
A.
,
1990
, “
Ultrafast Relaxation of Electrons Probed by Surface-Plasmons at a Thin Silver Film
,”
Phys. Rev. Lett.
,
64
(
7
), pp.
784
787
.10.1103/PhysRevLett.64.784
15.
Voyiadjis
,
G. Z.
, and
Abed
,
F. H.
,
2005
, “
Effect of Dislocation Density Evolution on the Thermomechanical Response of Metals With Different Crystal Structures at Low and High Strain Rates and Temperatures
,”
Arch. Mech.
,
57
(
4
), pp.
299
343
.
16.
Voyiadjis
,
G. Z.
, and
Abed
,
F. H.
,
2005
, “
Microstructural Based Models for BCC and FCC Metals With Temperature and Strain Rate Dependency
,”
Mech. Mater.
,
37
(
2–3
), pp.
355
378
.10.1016/j.mechmat.2004.02.003
17.
Voyiadjis
,
G. Z.
, and
Abed
,
F. H.
,
2006
, “
Implicit Algorithm for Finite Deformation Hypoelastic-Viscoplasticity in FCC Metals
,”
Int. J. Numer. Methods Eng.
,
67
(
7
), pp.
933
959
.10.1002/nme.1655
18.
Voyiadjis
,
G. Z.
, and
Abed
,
F. H.
,
2007
, “
Transient Localizations in Metals Using Microstructure-Based Yield Surfaces
,”
Model. Simul. Mater. Sci. Eng.
,
15
(
1
), pp.
S83
S95
.10.1088/0965-0393/15/1/S08
19.
Abed
,
F. H.
, and
Voyiadjis
,
G. Z.
,
2005
, “
A Consistent Modified Zerilli–Armstrong Flow Stress Model for BCC and FCC Metals for Elevated Temperatures
,”
Acta Mech.
,
175
(
1–4
), pp.
1
18
.10.1007/s00707-004-0203-1
20.
Abed
,
F. H.
, and
Voyiadjis
,
G. Z.
,
2007
, “
Thermodynamic Consistent Formulations of Viscoplastic Deformations in FCC Metals
,”
ASCE J. Eng. Mech.
,
133
(
1
), pp.
76
86
.10.1061/(ASCE)0733-9399(2007)133:1(76)
21.
Aifantis
,
K. E.
, and
Willis
,
J. R.
,
2005
, “
The Role of Interfaces in Enhancing the Yield Strength of Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
53
(
5
), pp.
1047
1070
.10.1016/j.jmps.2004.12.003
22.
Gurtin
,
M. E.
,
2008
, “
A Theory of Grain Boundaries That Accounts Automatically for Grain Misorientation and Grain-Boundary Orientation
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
640
662
.10.1016/j.jmps.2007.05.002
23.
Gurtin
,
M. E.
,
2003
, “
On a Framework for Small-Deformation Viscoplasticity: Free Energy, Microforces, Strain Gradients
,”
Int. J. Plast.
,
19
(
1
), pp.
47
90
.10.1016/S0749-6419(01)00018-3
24.
Sun
,
S.
,
Adams
,
B. L.
, and
King
,
W. E.
,
2000
, “
Observations of Lattice Curvature Near the Interface of a Deformed Aluminium Bicrystal
,”
Philos. Mag. A
,
80
(
1
), pp.
9
25
.10.1080/01418610008212038
25.
Soer
,
W. A.
, and
De Hosson
,
J. T. M.
,
2005
, “
Detection of Grain-Boundary Resistance to Slip Transfer Using nano-indentation
,”
Mater. Lett.
,
59
(
24–25
), pp.
3192
3195
.10.1016/j.matlet.2005.03.075
26.
Wang
,
M. G.
, and
Ngan
,
A. H. W.
,
2004
, “
Indentation Strain Burst Phenomenon Induced by Grain Boundaries in Niobium
,”
J. Mater. Res.
,
19
(
8
), pp.
2478
2486
.10.1557/JMR.2004.0316
27.
Britton
,
T. B.
,
Randman
,
D.
, and
Wilkinson
,
A. J.
,
2009
, “
Nanoindentation Study of Slip Transfer Phenomenon at Grain Boundaries
,”
J. Mater. Res.
,
24
(
3
), pp.
607
615
.10.1557/jmr.2009.0088
28.
Cermelli
,
P.
, and
Gurtin
,
M. E.
,
2002
, “
Geometrically Necessary Dislocations in Viscoplastic Single Crystals and Bicrystals Undergoing Small Deformations
,”
Int. J. Solids Struct.
,
39
(
26
), pp.
6281
6309
.10.1016/S0020-7683(02)00491-2
29.
Gurtin
,
M. E.
, and
Needleman
,
A.
,
2005
, “
Boundary Conditions in Small-Deformation, Single-Crystal Plasticity that Account for the Burgers Vector
,”
J. Mech. Phys. Solids
,
53
(
1
), pp.
1
31
.10.1016/j.jmps.2004.06.006
30.
Aifantis
,
K. E.
, and
Willis
,
J. R.
,
2006
, “
Scale Effects Induced by Strain-Gradient Plasticity and Interfacial Resistance in Periodic and Randomly Heterogeneous Media
,”
Mech. Mater.
,
38
(
8–10
), pp.
702
716
.10.1016/j.mechmat.2005.06.010
31.
Fredriksson
,
P.
, and
Gudmundson
,
P.
,
2007
, “
Competition Between Interface and Bulk Dominated Plastic Deformation in Strain Gradient Plasticity
,”
Model. Simul. Mater. Sci. Eng.
,
15
(
1
), pp.
S61
S69
.10.1088/0965-0393/15/1/S06
32.
Fleck
,
N. A.
, and
Willis
,
J. R.
,
2009
, “
A Mathematical Basis for Strain-Gradient Plasticity Theory—Part I: Scalar Plastic Multiplier
,”
J. Mech. Phys. Solids
,
57
(
1
), pp.
161
177
.10.1016/j.jmps.2008.09.010
33.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2011
, “
Variable (Intrinsic) Material Length Scale for Face-Centred Cubic Metals Using NanoIndentation
,”
Proc. Inst. Mech. Eng.
, Part N,
224
, pp.
123
147
.10.1177/1740349911413647
34.
Faghihi
,
D.
, and
Voyiadjis
,
G. Z.
,
2012
, “
Determination of Nanoindentation Size Effects and Variable Material Intrinsic Length Scale for Body-Centered Cubic Metals
,”
Mech. Mater.
,
44
(
0
), pp.
189
211
.10.1016/j.mechmat.2011.07.002
35.
Forest
,
S.
,
2009
, “
Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage
,”
ASCE J. Eng. Mech.
,
135
(
3
), pp.
117
131
.10.1061/(ASCE)0733-9399(2009)135:3(117)
36.
Forest
,
S.
, and
Aifantis
,
E. C.
,
2010
, “
Some Links Between Recent Gradient Thermo-Elasto-Plasticity Theories and the Thermomechanics of Generalized Continua
,”
Int. J. Solids Struct.
,
47
(
25–26
), pp.
3367
3376
.10.1016/j.ijsolstr.2010.07.009
37.
Gurtin
,
M. E.
, and
Reddy
,
B. D.
,
2009
, “
Alternative Formulations of Isotropic Hardening for Mises Materials, and Associated Variational Inequalities
,”
Continuum Mech. Thermodyn.
,
21
(
3
), pp.
237
250
.10.1007/s00161-009-0107-3
38.
Zaiser
,
M.
,
Glazov
,
M.
,
Lalli
,
L. A.
, and
Richmond
,
O.
,
1999
, “
On the Relations Between Strain and Strain-Rate Softening Phenomena in Some Metallic Materials: A Computational Study
,”
Comput. Mater. Sci.
,
15
(
1
), pp.
35
49
.10.1016/S0927-0256(98)00131-1
39.
Hirth
,
J. P.
, and
Nix
,
W. D.
,
1969
, “
An Analysis of Thermodynamics of Dislocation Glide
,”
Phys. Status Solidi
,
35
(
1
), pp.
177
188
.10.1002/pssb.19690350116
40.
Bammann
,
D. J.
, and
Aifantis
,
E. C.
,
1982
, “
On a Proposal for a Continuum With Microstructure
,”
Acta Mech.
,
45
(
1–2
), pp.
91
121
.10.1007/BF01295573
41.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
,
1975
, “
Thermodynamics and Kinetics of Slip
,”
Prog. Mater. Sci.
,
19
, pp.
1
281
.10.1016/0079-6425(75)90005-5
42.
Kocks
,
U. F.
,
2001
, “
Realistic Constitutive Relations for Metal Plasticity
,”
Mater. Sci. Eng. A
,
317
(
1–2
), pp.
181
187
.10.1016/S0921-5093(01)01174-1
43.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
(
5
), pp.
1816
1825
.10.1063/1.338024
44.
Nemat-Nasser
,
S.
,
Isaacs
,
J. B.
, and
Liu
,
M. Q.
,
1998
, “
Microstructure of High-Strain, High-Strain-Rate Deformed Tantalum
,”
Acta Mater.
,
46
(
4
), pp.
1307
1325
.10.1016/S1359-6454(97)00746-5
45.
Nemat-Nasser
,
S.
, and
Li
,
Y. L.
,
1998
, “
Flow Stress of FCC Polycrystals With Application to OFHC Cu
,”
Acta Mater.
,
46
(
2
), pp.
565
577
.10.1016/S1359-6454(97)00230-9
46.
Orowan
,
E.
,
1934
, “
Mechanical Strength Properties and Real Structure of Crystals
,”
Z. Kristallogr.
,
89
(
3/4
), pp.
327
343
.
47.
Barlat
,
F.
,
Glazov
,
M. V.
,
Brem
,
J. C.
, and
Lege
,
D. J.
,
2002
, “
A Simple Model for Dislocation Behavior, Strain and Strain Rate Hardening Evolution in Deforming Aluminum Alloys
,”
Int. J. Plast.
,
18
(
7
),
919
939
.10.1016/S0749-6419(01)00015-8
48.
Klepaczko
,
J. R.
,
1988
, “
A General Approach to Rate Sensitivity and Constitutive Modeling of FCC and BCC Metals
,”
Impact Effects of Fast Transient Loadings
,
Balkema, Leiden
,
The Netherlands
, pp.
3
10
.
49.
Kubin
,
L. P.
, and
Estrin
,
Y.
,
1990
, “
Evolution of Dislocation Densities and the Critical Conditions for the Portevin-Lechatelier Effect
,”
Acta Metall. Mater.
,
38
(
5
), pp.
697
708
.10.1016/0956-7151(90)90021-8
50.
Klepaczko
,
J. R.
,
1988
, “A General Approach to Rate Sensitivity and Constitutive Modeling of FCC and BCC Metals,” Impact: Effects of Fast Transient Loadings,
A. A.
Balkema
,
Leiden
,
The Netherlands
, p.
3
.
51.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Instit. Metals
,
62
, pp.
307
324
.
52.
Abu Al-Rub
,
R. K.
, and
Faruk
,
A. N. M.
,
2011
, “
Coupled Interfacial Energy and Temperature Effects on Size-Dependent Yield Strength and Strain Hardening of Small Metallic Volumes
,”
ASME J. Eng. Mater. Technol.
,
133
(
1
), p.
011017
.10.1115/1.4002651
53.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1959
, “
Free Energy of a Nonuniform System. 3. Nucleation in a 2-Component Incompressible Fluid
,”
J. Chem. Phys.
,
31
(
3
), pp.
688
699
.10.1063/1.1730447
54.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1958
, “
Free Energy of a Nonuniform System. 1. Interfacial Free Energy
,”
J. Chem. Phys.
,
28
(
2
), pp.
258
267
.10.1063/1.1744102
55.
Meyers
,
M. A.
, and
Chawla
,
K. K.
,
2009
,
Mechanical Behavior of Materials
, 2nd ed.,
Cambridge University Press
,
New York
.
56.
Chung
,
Y.-W.
,
2007
,
Introduction to Materials Science and Engineering
,
CRC Press
,
Boca Raton, FL
.
57.
Amiri
,
M.
, and
Khonsari
,
M. M.
,
2010
, “
Life Prediction of Metals Undergoing Fatigue Load Based on Temperature Evolution
,”
Mater. Sci. Eng. A
,
527
(
6
), pp.
1555
1559
.10.1016/j.msea.2009.10.025
58.
Amiri
,
M.
, and
Khonsari
,
M. M.
,
2010
, “
Rapid Determination of Fatigue Failure Based on Temperature Evolution: Fully Reversed Bending Load
,”
Int. J. Fatigue
,
32
(
2
), pp.
382
389
.10.1016/j.ijfatigue.2009.07.015
59.
Amiri
,
M.
, and
Khonsari
,
M. M.
,
2011
, “
On the Role of Entropy Generation in Processes Involving Fatigue
,”
Entropy
,
14
(
1
), pp.
24
31
.10.3390/e14010024
60.
Naderi
,
M.
,
Amiri
,
M.
, and
Khonsari
,
M. M.
,
2010
, “
On the Thermodynamic Entropy of Fatigue Fracture
,”
Proc. R. Soc. London, Ser. A
,
466
(
2114
), pp.
423
438
.10.1098/rspa.2009.0348
61.
Kaganov
,
M. I.
,
Lifshitz
,
I. M.
, and
Tanatarov
,
L. V.
,
1956
, “
Relaxation Between Electrons and the Crystalline Lattice
,”
Zh. Eksp. Teor. Fiz.
,
31
, pp.
232
237
.
62.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, “
Short-Pulse Laser-Heating on Metals
,”
Int. J. Heat Mass Transfer
,
35
(
3
), pp.
719
726
.10.1016/0017-9310(92)90131-B
63.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Heat-Transfer Mechanisms During Short-Pulse Laser-Heating of Metals
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
835
841
.10.1115/1.2911377
64.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2011
, “
Thermo-Mechanical Strain Gradient Plasticity With Energetic and Dissipative Length Scales
,”
Int. J. Plast.
,
30–31
, pp.
218
247
.10.1016/j.ijplas.2011.10.007
65.
Hansen
,
N. R.
, and
Schreyer
,
H. L.
,
1994
, “
A Thermodynamically Consistent Framework for Theories of Elastoplasticity Coupled With Damage
,”
Int. J. Solids Struct.
,
31
(
3
), pp.
359
389
.10.1016/0020-7683(94)90112-0
66.
Lemaitre
,
J.
,
1985
, “
Coupled Elasto-Plasticity and Damage Constitutive-Equations
,”
Comput. Methods Appl. Mech. Eng.
,
51
(
1–3
), pp.
31
49
.10.1016/0045-7825(85)90026-X
67.
Naderi
,
M.
, and
Khonsari
,
M. M.
,
2010
, “
An Experimental Approach to Low-Cycle Fatigue Damage Based on Thermodynamic Entropy
,”
Int. J. Solids Struct.
,
47
(
6
), pp.
875
880
.10.1016/j.ijsolstr.2009.12.005
68.
Naderi
,
M.
, and
Khonsari
,
M. M.
,
2010
, “
A Thermodynamic Approach to Fatigue Damage Accumulation Under Variable Loading
,”
Mater. Sci. Eng. A
,
527
(
23
), pp.
6133
6139
.10.1016/j.msea.2010.05.018
69.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2004
, “
On the Thermomechanics of Materials That Have Multiple Natural Configurations—Part I: Viscoelasticity and Classical Plasticity
,”
Z. Angew. Math. Phys.
,
55
(
5
), pp.
861
893
.10.1007/s00033-004-4019-6
70.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2004
, “
On the Thermomechanics of Materials That Have Multiple Natural Configurations—Part II: Twinning and Solid to Solid Phase Transformation
,”
Z. Angew. Math. Phys.
,
55
(
6
), pp.
1074
1093
.10.1007/s00033-004-4020-0
71.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2009
, “
Thermodynamics Applied to Gradient Theories Involving the Accumulated Plastic Strain: The Theories of Aifantis and Fleck and Hutchinson and Their Generalization
,”
J. Mech. Phys. Solids
,
57
(
3
), pp.
405
421
.10.1016/j.jmps.2008.12.002
72.
Fleck
,
N. A.
, and
Willis
,
J. R.
,
2009
, “
A Mathematical Basis for Strain-Gradient Plasticity Theory. Part II: Tensorial Plastic Multiplier
,”
J. Mech. Phys. Solids
,
57
(
7
), pp.
1045
1057
.10.1016/j.jmps.2009.03.007
73.
Rao
, I
. J.
, and
Rajagopal
,
K. R.
,
2000
, “
Phenomenological Modeling of Polymer Crystallization Using the Notion of Multiple Natural Configurations
,”
Interfaces Free Boundaries
,
2
, pp.
73
94
.10.4171/IFB/13
74.
Anand
,
L.
,
Gurtin
,
M. E.
,
Lele
,
S. P.
, and
Gething
,
C.
,
2005
, “
A One-Dimensional Theory of Strain-Gradient Plasticity: Formulation, Analysis, Numerical Results
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1789
1826
.10.1016/j.jmps.2005.03.003
75.
Bardella
,
L.
,
2007
, “
Some Remarks on the Strain Gradient Crystal Plasticity Modelling, With Particular Reference to the Material Length Scales Involved
,”
Int. J. Plast.
,
23
(
2
), pp.
296
322
.10.1016/j.ijplas.2006.05.004
76.
Reddy
,
B. D.
,
Ebobisse
,
F.
, and
McBride
,
A.
,
2008
, “
Well-Posedness of a Model of Strain Gradient Plasticity for Plastically Irrotational Materials
,”
Int. J. Plast.
,
24
(
1
), pp.
55
73
.10.1016/j.ijplas.2007.01.013
77.
Shu
,
J. Y.
,
Fleck
,
N. A.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
2001
, “
Boundary Layers in Constrained Plastic Flow: Comparison of Nonlocal and Discrete Dislocation Plasticity
,”
J. Mech. Phys. Solids
,
49
(
6
), pp.
1361
1395
.10.1016/S0022-5096(00)00074-0
78.
Bardella
,
L.
,
2006
, “
A Deformation Theory of Strain Gradient Crystal Plasticity That Accounts for Geometrically Necessary Dislocations
,”
J. Mech. Phys. Solids
,
54
(
1
), pp.
128
160
.10.1016/j.jmps.2005.08.003
79.
Bardella
,
L.
, and
Giacomini
,
A.
,
2008
, “
Influence of Material Parameters and Crystallography on the Size Effects Describable by Means of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
56
(
9
), pp.
2906
2934
.10.1016/j.jmps.2008.04.001
80.
Nix
,
W. D.
, and
Gao
,
H. J.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.10.1016/S0022-5096(97)00086-0
81.
Swadener
,
J. G.
,
George
,
E. P.
, and
Pharr
,
G. M.
,
2002
, “
The Correlation of the Indentation Size Effect Measured With Indenters of Various Shapes
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
681
694
.10.1016/S0022-5096(01)00103-X
82.
Abu Al-Rub
,
R. K.
, and
Voyiadjis
,
G. Z.
,
2004
, “
Analytical and Experimental Determination of the Material Intrinsic Length Scale of Strain Gradient Plasticity Theory From Micro- and Nano-Indentation Experiments
,”
Int. J. Plast.
,
20
(
6
), pp.
1139
1182
.10.1016/j.ijplas.2003.10.007
83.
Voyiadjis
,
G. Z.
, and
Abu Al-Rub
,
R. K.
,
2005
, “
Gradient Plasticity Theory With a Variable Length Scale Parameter
,”
Int. J. Solids Struct.
,
42
(
14
), pp.
3998
4029
.10.1016/j.ijsolstr.2004.12.010
84.
Kysar
,
J. W.
,
Saito
,
Y.
,
Oztop
,
M. S.
,
Lee
,
D.
, and
Huh
,
W. T.
,
2010
, “
Experimental Lower Bounds on Geometrically Necessary Dislocation Density
,”
Int. J. Plast.
,
26
(
8
), pp.
1097
1123
.10.1016/j.ijplas.2010.03.009
85.
Gudmundson
,
P.
,
2004
, “
A Unified Treatment of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1379
1406
.10.1016/j.jmps.2003.11.002
86.
Voyiadjis
,
G. Z.
,
Almasri
,
A. H.
, and
Park
,
T.
,
2010
, “
Experimental Nanoindentation of BCC Metals
,”
Mech. Res. Commun.
,
37
(
3
), pp.
307
314
.10.1016/j.mechrescom.2010.02.001
87.
Voyiadjis
,
G. Z.
, and
Peters
,
R.
,
2010
, “
Size Effects in Nanoindentation: An Experimental and Analytical Study
,”
Acta Mech.
,
211
(
1–2
), pp.
131
153
.10.1007/s00707-009-0222-z
88.
Almasri
,
A. H.
, and
Voyiadjis
,
G. Z.
,
2010
, “
Nano-Indentation in FCC Metals: Experimental Study
,”
Acta Mech.
,
209
(
1–2
), pp.
1
9
.10.1007/s00707-009-0151-x
89.
Ohmura
,
T.
,
Minor
,
A. M.
,
Stach
,
E. A.
, and
Morris
,
J. W.
,
2004
, “
Dislocation-Grain Boundary Interactions in Martensitic Steel Observed Through In Situ Nanoindentation in a Transmission Electron Microscope
,”
J. Mater. Res.
,
19
(
12
), pp.
3626
3632
.10.1557/JMR.2004.0474
90.
Voyiadjis
,
G. Z.
,
Faghihi
,
D.
, and
Zhang
,
C.
,
2011
, “
Analytical and Experimental Detemination of Rate, and Temperature Dependent Length Scales Using Nanoindentation Experiments
,”
ASCE J. Nanomech. Micromech.
,
1
(
1
), pp.
24
40
.10.1061/(ASCE)NM.2153-5477.0000027
91.
Lee
,
T. C.
,
Robertson
, I
. M.
, and
Birnbaum
,
H. K.
,
1989
, “
Prediction of Slip Transfer Mechanisms Across Grain-Boundaries
,”
Scr. Metall.
,
23
(
5
), pp.
799
803
.10.1016/0036-9748(89)90534-6
92.
Bisson
,
J. F.
,
Yagi
,
H.
,
Yanagitani
,
T.
,
Kaminskii
,
A.
,
Barabanenkov
,
Y. N.
, and
Ueda
,
K. I.
,
2007
, “
Influence of the Grain Boundaries on the Heat Transfer in Laser Ceramics
,”
Opt. Rev.
,
14
(
1
), pp.
1
13
.10.1007/s10043-007-0001-9
93.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
94.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
95.
Voyiadjis
,
G. Z.
, and
Deliktas
,
B.
,
2009
, “
Theoretical and Experimental Characterization for the Inelastic Behavior of the Micro-/Nanostructured Thin Films Using Strain Gradient Plasticity With Interface Energy
,”
ASME J. Eng. Mater. Technol.
,
131
(
4
), p.
041202
.10.1115/1.3183774
96.
Shampine
,
L. F.
,
2003
, “
Singular Boundary Value Problems for ODEs
,”
Appl. Math. Comput.
,
138
(
1
), pp.
99
112
.10.1016/S0096-3003(02)00111-X
97.
Kierzenka
,
J.
, and
Shampine
,
L. F.
,
2001
, “
A BVP Solver Based on Residual Control and the MATLAB PSE
,”
ACM Trans.
,
27
(
3
), pp.
299
316
.10.1145/502800.502801
98.
Shampine
,
L. F.
,
Reichelt
,
M. W.
, and
Kierzenka
,
J.
,
2000
, “
Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB With bvp4c
,”
Tutorial Notes
, available at http://www.mathworks.com/bvp_tutorial
99.
Zhang
,
J.
, and
Zhao
,
J. J.
,
2001
, “
High Accuracy Stable Numerical Solution of 1D Microscale Heat Transport Equation
,”
Commun. Numer. Methods Eng.
,
17
(
11
), pp.
821
832
.10.1002/cnm.453
100.
Elsayed-Ali
,
H. E.
,
Norris
,
T. B.
,
Pessot
,
M. A.
, and
Mourou
,
G. A.
,
1987
, “
Time-Resolved Observation of Electron-Phonon Relaxation in Copper
,”
Phys. Rev. Lett.
,
58
(
12
), pp.
1212
1215
.10.1103/PhysRevLett.58.1212
You do not currently have access to this content.