The continuum models that take plastic material behavior into consideration are derived to analyze periodic octet-truss lattice materials under multiaxial loading. The main focus of this study is to investigate the basic topology of unit cell structures having the cubic symmetry and to formulate the analytical models for predicting pressure load-dependent stress surfaces accurately. The discrete lattice materials are converted into equivalent model continua that are obtained by physically homogenizing the property of the unit cell structures. The effective continuum models contain information on the mechanical characteristics of internal truss members with respect to axial stiffness, internal stress variable, structural packing, and material density at the microscale level. With the hardening material model introduced in the homogenization process, the plastic flow acting on the microscopic truss members gives rise to extend the elastic domain of the analytical stress function derived from homogenize constitutive equations at the macroscale level. Analytical stress predictions show excellent agreements with the results obtained from finite element (FE) analyses.

References

1.
Biagi
,
R.
, and
Bart-Smith
,
H.
,
2007
, “
Imperfection Sensitivity of Pyramidal Core Sandwich Structures
,”
Int. J. Solids Struct.
,
44
, pp.
4690
4706
.10.1016/j.ijsolstr.2006.11.049
2.
Liu
,
T.
,
Deng
,
Z. C.
, and
Lu
,
T. J.
,
2006
, “
Design Optimization of Truss-Cored Sandwiches With Homogenization
,”
Int. J. Solids Struct.
,
43
, pp.
7891
7918
.10.1016/j.ijsolstr.2006.04.010
3.
Lake
,
S. M.
,
1992
, “
Stiffness and Strength Tailoring in Uniform Space-Filling Truss Structures
,” NASA TP-3210.
4.
Fuller
,
R. B.
,
1961
, “
Octet Truss
,” U.S. Patent No. 2,986,241.
5.
Nayfeh
,
A. H.
, and
Hefzy
,
M. S.
,
1978
, “
Continuum Modeling of Three-Dimensional Truss-Like Space Structures
,”
AIAA J.
16
(
8
), pp.
779
787
.10.2514/3.7581
6.
Wicks
,
N.
, and
Hutchinson
,
J. W.
,
2001
, “
Optimal Truss Plates
,”
Int. J. Solids Struct.
,
38
, pp.
5165
5183
.10.1016/S0020-7683(00)00315-2
7.
Deshpande
, V
. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
, pp.
1747
1769
.10.1016/S0022-5096(01)00010-2
8.
Doyoyo
,
M.
, and
Hu
,
J. W.
,
2006
, “
Plastic Failure Analysis of an Auxetic Foam or Inverted Strut Lattice Under Longitudinal and Shear Loads
,”
J. Mech. Phys. Solids
,
54
(
7
), pp.
1479
1492
.10.1016/j.jmps.2005.12.007
9.
Mohr
,
D.
,
2005
, “
Mechanism-Based Multi-Surface Plasticity Model for Ideal Truss Lattice Materials
,”
Int. J. Solids Struct.
,
42
(11–12), pp.
3235
3260
.10.1016/j.ijsolstr.2004.10.032
10.
Wallach
,
J. C.
, and
Gibson
,
L. J.
,
2001
, “
Mechanical Properties of a Three-Dimensional Truss Material
,”
Int. J. Solids Struct.
,
38
, pp.
7181
7196
.10.1016/S0020-7683(00)00400-5
11.
Doyoyo
,
M.
, and
Hu
,
J. W.
,
2006
, “
Multi-Axial Failure of Metallic Strut-Lattice Materials Composed of Short and Slender Struts
,”
Int. J. Solids Struct.
,
43
(20), pp.
6115
6139
.10.1016/j.ijsolstr.2005.12.001
12.
Ziegler
,
E.
,
Accorsi
,
M.
, and
Bennett
,
M.
,
2004
, “
Continuum Plate Model for Lattice Block Material
,”
Mech. Mater.
,
36
, pp.
753
766
.10.1016/j.mechmat.2003.06.002
13.
Mohr
,
D.
,
2006
, “
Multi-Scale Finite-Strain Plasticity Model for Stable Metallic Honeycombs Incorporating Microstructural Evolution
,”
Int. J. Plasticity
,
22
, pp.
1899
1923
.10.1016/j.ijplas.2006.01.004
14.
Suquet
,
P.
,
1987
, “
Elements of Homogenization for Inelastic Solid Mechanics
,”
Homogenization Techniques for Composite Media
(Lecture Notes in Physics),
E.
Sanchez-Palencia
and
A.
Zaoui
, eds.,
Springer
,
Berlin
, pp.
193
278
.
15.
Wang
,
A. J.
, and
McDowell
,
D. L.
,
2005
, “
Yield Surfaces of Various Periodic Metal Honeycombs at Intermediate Relative Density
,”
Int. J. Plasticity
,
21
, pp.
285
320
.10.1016/j.ijplas.2003.12.002
16.
Crisfield
,
M. A.
,
1997
,
Non-Linear Finite Element Analysis of Solids and Structures
, Vol.
I
,
John Wiley and Sons
,
London
, pp.
152
200
.
17.
Ottosen
,
N. S.
, and
Ristinmaa
,
M.
,
2005
,
The Mechanics of Constitutive Modeling
, 1st ed.,
Elsevier
,
London
.
18.
ABAQUS
, v. 6.7-1,
2006
,
Theory and User's Manual
,
Hibbit, Karlsson & Sorensen, Inc
.,
Pawtucket, RI
.
You do not currently have access to this content.