Vibration resulting from high-velocity projectiles impacting a structure was simulated at multiple scales. Local impact simulations were performed to predict the material deformation and penetration phenomena at the location of impact. The resulting penetration behavior of a steel panel was analyzed for various projectile velocities, sizes, and panel thicknesses. Three-layer panels with Kevlar as the core material were simulated to understand the effects of structural layering on the reduction of the impact force. The forces acting on the panel in the longitudinal and transverse directions were calculated from the obtained stress distribution in the local deformation model. Using the estimated force input, transient longitudinal and flexural wave propagations were calculated to analyze the radiation of the impact energy along the structural span. Vulnerable positions with high possibilities of damage to crucial components due to impact loading were identified from the resulting vibration responses.

References

1.
Robert
,
E. B.
,
2003
,
The Fundamentals of Aircraft Combat Survivability Analysis and Design
, 2nd ed.,
AIAA Education Series
,
Reston, VA
.
2.
Corbertt
,
G. G.
,
Reid
,
S. R.
, and
Johnson
,
W.
,
1996
, “
Impact Loading of Plates and Shells by Free-Flying Projectile: A Review
,”
Int. J. Impact Eng.
,
18
(
2
), pp.
141
230
.10.1016/0734-743X(95)00023-4
3.
Tai
,
Y.-S.
, and
Tang
,
C.-C.
,
2006
, “
Numerical Simulation: The Dynamic Behavior of Reinforced Concrete Plates Under Normal Impact
,”
Theor. Appl. Fract. Mech.
,
45
, pp.
117
127
.10.1016/j.tafmec.2006.02.007
4.
Børvik
,
T.
,
Hopperstad
,
O. S.
,
Berstad
,
T.
, and
Langseth
,
M.
,
2002
, “
Perforation of 12 mm Thick Steel Plates by 20 mm Diameter Projectiles With Flat, Hemispherical and Conical Noses Part II: Numerical Simulations
,”
Int. J. Impact Eng.
,
27
, pp.
37
64
.10.1016/S0734-743X(01)00035-5
5.
Børvik
,
T.
,
Langseth
,
M.
,
Hopperstad
,
O. S.
, and
Malo
,
K. A.
,
1999
, “
Ballistic Penetration of Steel Plates
,”
Int. J. Impact Eng.
,
22
, pp.
855
886
.10.1016/S0734-743X(99)00011-1
6.
Li
,
Q. M.
,
Reid
,
S. R.
,
Wen
,
H. M.
, and
Telford
,
A. R.
,
2005
, “
Local Impact Effects of Hard Missiles on Concrete Targets
,”
Int. J. Impact Eng.
,
32
, pp.
224
284
.10.1016/j.ijimpeng.2005.04.005
7.
Holmquist
,
T. J.
, and
Johnson
,
G. R.
,
2008
, “
Response of Boron Carbide Subjected to High-Velocity Impact
,”
Int. J. Impact Eng.
,
35
, pp.
742
752
.10.1016/j.ijimpeng.2007.08.003
8.
Li
,
J.
,
Li
,
X. J.
,
Zhao
,
Z.
,
Ou
,
Y. X.
, and
Jiang
,
D. A.
,
2007
, “
Simulation on Projectile With High Rotating Speed Penetrating Into the Moving Vehicular Door
,”
Theor. Appl. Fract. Mech.
,
47
, pp.
113
119
.10.1016/j.tafmec.2006.11.003
9.
Zukas
,
J. A.
, and
Scheffler
,
D. R.
,
2001
, “
Impact Effects in Multilayered Plates
,”
Int. J. Solids Struct.
,
38
, pp.
3321
3328
.10.1016/S0020-7683(00)00260-2
10.
Mahfuz
,
H.
,
Zhu
,
Y.
,
Haque
,
A.
,
Abutalib
,
A.
,
Vaidya
,
U.
,
Jeelani
,
S.
,
Gama
,
B.
,
Gillespie
,
J.
, and
Fink
,
B.
,
2000
, “
Investigation of High-Velocity Impact on Integral Armor Using Finite Element Method
,”
Int. J. Impact Eng.
,
24
, pp.
203
217
.10.1016/S0734-743X(99)00047-0
11.
Shokrieh
,
M. M.
, and
Javadpour
,
G. H.
,
2008
, “
Penetration Analysis of a Projectile in Ceramic Composite Armor
,”
Compos. Struct.
,
82
, pp.
269
276
.10.1016/j.compstruct.2007.01.023
12.
Mines
,
R. A. W.
,
2004
, “
A One-Dimensional Stress Wave Analysis of a Lightweight Composite Armour
,”
Compos. Struct.
,
64
, pp.
55
62
.10.1016/S0263-8223(03)00213-7
13.
Grujicic
,
M.
,
Pandurangan
,
B.
,
Koudela
,
K. L.
, and
Cheeseman
,
B. A.
,
2006
, “
A Computational Analysis of the Ballistic Performance of Light-Weight Hybrid Composite Armors
,”
Appl. Surf. Sci.
,
253
, pp.
730
745
.10.1016/j.apsusc.2006.01.016
14.
Koo
,
M. H.
,
Lim
,
H. S.
,
Gimm
,
H. I.
, and
Yoo
,
H. H.
,
2009
, “
Study of Impact Energy Propagation Phenomenon and Modal Characteristics of an Armored Vehicle Undergoing High Velocity Impact
,”
J. Mech. Sci. Technol.
,
23
, pp.
964
967
.10.1007/s12206-009-0322-7
15.
Anderson
,
C. E.
,
1987
, “
An Overview of the Theory of Hydrocodes
,”
Int. J. Impact Eng.
,
5
, pp.
33
59
.10.1016/0734-743X(87)90029-7
16.
Benson
,
D. J.
,
1992
, “
Computational Methods in Lagranian and Eulerian Hydrocodes
,”
Comp. Method. Appl. M.
,
99
, pp.
235
394
.10.1016/0045-7825(92)90042-I
17.
Taylor
,
E. A.
,
Tsembelis
,
K.
,
Hayhurst
,
C. J.
,
Kay
,
L.
, and
Burchell
,
M. J.
,
1999
, “
Hydrocode Modelling of Hypervelocity Impact on Brittle Materials: Depth of Penetration and Conchoidal Diameter
,”
Int. J. Impact Eng.
,
23
, pp.
895
904
.10.1016/S0734-743X(99)00133-5
18.
Zhu
,
G.
,
Goldsmith
,
W.
, and
Dharan
,
C. K. H.
,
1992
, “
Penetration of Laminated Kevlar by Projectiles—I. Experimental Investigation
,”
Int. J. Solids Struct.
,
29
(
4
), pp.
399
420
.10.1016/0020-7683(92)90207-A
19.
Tham
,
C. Y.
,
Tan
, V
. B. C.
, and
Lee
,
H. P.
,
2008
, “
Ballistic Impact of a KEVLAR® Helmet: Experiment and Simulations
,”
Int. J. Impact Eng.
,
35
, pp.
304
318
.10.1016/j.ijimpeng.2007.03.008
20.
Century Dynamics
,
2005
,
AUTODYN Theory Manual
,
Century Dynamics
, Concord, CA.
21.
Graff
,
K. F.
,
1975
,
Wave Motion Elastic Solids
,
Dover
,
New York
.
22.
Park
,
J.
,
Siegmund
,
T.
, and
Mongeau
,
L.
,
2003
, “
Analysis of the Flow-Induced Vibrations of Viscoelastically Supported Rectangular Plates
,”
J. Sound Vib.
,
261
, pp.
225
245
.10.1016/S0022-460X(02)00955-0
You do not currently have access to this content.