A simplified nonincremental interaction law is used describing the nonlinear elastic-inelastic behavior of FCC polycrystals proposed recently (Abdul-Latif and Radi, 2010, “Modeling of the Grain Shape Effect on the Elastic-Inelastic Behavior of Polycrystals with Self-Consistent Scheme,” ASME J. Eng. Mater. Technol., 132(1), p. 011008). In this scheme, the elastic strain defined at the granular level based on the Eshelby's tensor is assumed to be isotropic, uniform and compressible. Hence, the approach considers that the inclusion (grain) has an ellipsoidal shape of half axes defining by a, b and c such as a ≠ b = c. The granular heterogeneous inelastic strain is locally determined using the slip theory. Both elastic and inelastic granular strains depend on the granular aspect ratio (α = a/b). An aggregate of grains of ellipsoidal shape is supposed to be randomly distributed with a distribution of aspect ratios having a log-normal statistical function. The effect of this distribution on the mechanical behavior is investigated. A host of cyclic inelastic behavior of polycrystalline metals is predicted under uniaxial and multiaxial loading paths. Using the aluminum alloy 2024, an original complex cyclic loading path type is proposed and carried out experimentally. After the model parameters calibration, the elastic-inelastic cyclic behavior of this alloy is quantitatively described by the model. As a conclusion, the model can successfully describe the elasto-inelastic at the overall and local levels.

References

1.
Moosbrugger
,
J. C.
, and
McDowell
,
D. L.
,
1989
, “
On a Class of Kinematic Hardening Rules for Nonproportional Cyclic Plasticity
,”
ASME J. Eng. Mater. Technol.
,
111
, pp.
87
98
.10.1115/1.3226439
2.
Doong
,
S. H.
, and
Socie
,
D. F.
,
1991
, “
Constitutive Modeling of Metals Under Nonproportional Cyclic Loading
,”
ASME J. Eng. Mater. Technol.
,
113
, pp.
23
30
.10.1115/1.2903379
3.
Abdul-Latif
,
A.
,
1996
, “
Constitutive Equations for Cyclic Plasticity of Waspaloy
,”
Int. J. Plasticity
,
12
, pp.
967
985
.10.1016/S0749-6419(96)00037-X
4.
Bocher
,
L.
,
Delobelle
,
P.
,
Robinet
,
P.
, and
Feaugas
,
X.
,
2001
, “
Mechanical and Microstructural Investigations of an Austenitic Stainless Steel Under Non-Proportional Loadings in Tension–Torsion-Internal and External Pressure
,”
Int. J. Plasticity
,
17
, pp.
1491
1530
.10.1016/S0749-6419(01)00013-4
5.
Yaguchi
,
M.
, and
Takahashi
Y.
,
2005
, “
Ratchetting of Viscoplastic Material With Cyclic Softening—Part 1: Experiments on Modified 9Cr–1Mo Steel
,”
Int. J. Plasticity
,
21
, pp.
43
65
.10.1016/j.ijplas.2004.02.001
6.
Zhang
,
J.
, and
Jiang
,
Y.
,
2005
, “
An Experimental Investigation on Cyclic Plastic Deformation and Substructures of Polycrystalline Copper
,”
Int. J. Plasticity
,
21
, pp.
2191
2211
.10.1016/j.ijplas.2005.02.004
7.
Kang
,
G.
,
Kan
,
Q.
,
Zhang
,
J.
, and
Sun
,
Y.
,
2006
, “
Time-Dependent Ratchetting Experiments of SS304 Stainless Steel
,”
Int. J. Plasticity
,
22
, pp.
858
894
.10.1016/j.ijplas.2005.05.006
8.
Kang
,
G.
,
2008
, “
Ratchetting: Recent Progresses in Phenomenon Observation, Constitutive Modeling and Application
,”
Int. J. Fatigue
,
30
, pp.
1448
1472
.10.1016/j.ijfatigue.2007.10.002
9.
McDowell
,
D. L.
,
1985
, “
A Tow Surface Model for Transient Nonproportional Cyclic Plasticity
,”
ASME J. Appl. Mech.
,
52
, pp.
298
308
.10.1115/1.3169044
10.
Benallal
,
A.
, and
Marquis
,
D.
,
1987
, “
Constitutive Equations for Nonproportional Cyclic Elasto-Viscoplasticity
,”
ASME J. Eng. Mater. Technol.
,
109
, pp.
326
336
.10.1115/1.3225985
11.
Voyiadjis
,
G. Z.
, and
Sivakumar
,
S. M.
,
1991
, “
A Robust Kinematic Hardening Rule for Cyclic Plasticity With Ratchetting Effects
,”
Acta Mech.
,
90
, pp.
105
123
.10.1007/BF01177403
12.
Zhang
,
Z.
,
Delagnes
,
D.
, and
Bernhart
,
G.
,
2002
, “
Anisothermal Cyclic Plasticity Modeling of Martensitic Steels
,”
Int. J. Fatigue
,
24
, pp.
635
648
.10.1016/S0142-1123(01)00182-7
13.
Vanegas-Márquez
,
E.
,
Mocellin
,
K.
,
Toualbi
,
L.
,
De Carlan
,
Y.
, and
Logé
,
R. E.
,
2012
, “
A Simple Approach for the Modeling of an ODS Steel Mechanical Behavior in Pilgering Conditions
,”
J. Nucl. Mater.
,
420
, pp.
479
490
.10.1016/j.jnucmat.2011.10.013
14.
Cailletaud
,
G.
,
1992
, “
A Micromechanical Approach to Inelastic Behaviour of Metals
,”
Int. J. Plasticity
,
8
, pp.
55
73
.10.1016/0749-6419(92)90038-E
15.
Hess
,
F.
,
1993
, “
Anisotropic Strain Hardening in Polycrystalline Copper and Aluminum
,”
Int. J. Plasticity
,
9
(4)
, pp.
405
420
.10.1016/0749-6419(93)90045-R
16.
Kouddane
,
R.
,
Molinari
,
A.
, and
Canova
,
G. R.
,
1993
, “
Self-Consistent Modeling of Heterogeneous Viscoelastic and Elasto-Viscoplastic Materials
,”
Large Plastic Deformations: Fundamentals and Applications to Metal Forming
, Vol. 91,
C.
Teodosiu
,
J. L.
Raphanel
,
and
F.
Sidoroff
, eds.,
A. A. Balkema Publishers, Rotterdam
,
The Netherlands
, p.
121
141
.
17.
Zouhal
,
N.
,
Molinari
,
A.
, and
Toth
,
L. S.
,
1996
, “
Elastic-Plastic Effects During Cyclic Loading as Predicted by Taylor-Lin Model of Polycrystal Elasto-viscoplasticity
,”
Int. J. Plasticity
,
12
, pp.
343
360
.10.1016/S0749-6419(96)00011-3
18.
Abdul-Latif
,
A.
,
Dingli
,
J-Ph.
, and
Saanouni
,
K.
,
1998
, “
Modeling of Complex Cyclic Inelasticity in Heterogeneous Polycrystalline Microstructure
,”
J. Mech. Mater.
,
30
, pp.
287
305
.10.1016/S0167-6636(98)00054-4
19.
Dingli
,
J. P.
,
Abdul-Latif
,
A.
, and
Saanouni
,
K.
,
2000
, “
Predictions of the Complex Cyclic Behavior of Polycrystals Using a New Self-Consistent Modeling
,”
Int. J. Plasticity
,
16
, pp.
411
437
.10.1016/S0749-6419(99)00060-1
20.
Manonukul
,
A.
,
Dunne
,
F. P. E.
,
Knowles
,
D.
, and
Williams
,
S.
,
2005
, “
Multiaxial Creep and Cyclic Plasticity in Nickel-Base Superalloy C263
,”
Int. J. Plasticity
,
21
, pp.
1
20
.10.1016/j.ijplas.2003.12.005
21.
Evrard
,
P.
,
Aubin
, V
.
,
Degallaix
,
S.
, and
Kondo
,
D.
,
2008
, “
Formulation of a New Single Crystal Law for Modeling the Cyclic Softening
,”
Mech. Res. Commun.
,
35
, pp.
589
594
.10.1016/j.mechrescom.2008.06.001
22.
Rudolph
,
P.
,
Frank-Rotsch
,
Ch.
,
Juda
,
U.
, and
Kiessling
,
F.-M.
,
2005
, “
Scaling of Dislocation Cells in GaAs Crystals by Global Numeric Simulation and Their Restraints by In Situ Control of Stoichiometry
,”
Mater. Sci. Eng., A
, 400–401, pp.
170
174
.
23.
Xiang
,
Y.
, and
Srolovitz
,
D. J.
,
2006
, “
Dislocation Climb Effects on Particle Bypass Mechanisms
,”
Philos. Mag.
,
86
, pp.
3937
3957
.10.1080/14786430600575427
24.
Chen
,
Z.
,
Chu
,
K. T.
,
Srolovitz
,
D. J.
,
Rickman
,
J. M.
, and
Haataja
,
M. P.
,
2010
, “
Dislocation Climb Strengthening in Systems With Immobile Obstacles: Three-Dimensional Level-Set Simulation Study
,”
Phys. Rev. B
,
81
, p.
054104
.10.1103/PhysRevB.81.054104
25.
Bako
,
B.
,
Clouet
,
E.
,
Dupuy
,
L. M.
, and
Blétry
,
M.
,
2011
, “
Dislocation Dynamics Simulations With Climb: Kinetics of Dislocation Loop Coarsening Controlled by Bulk Diffusion
,”
Philos. Mag.
,
91
, pp.
3173
3191
.10.1080/14786435.2011.573815
26.
Abdul-Latif
,
A.
, and
M.
Radi
,
2010
, “
Modeling of the Grain Shape Effect on the Elastic-Inelastic Behavior of Polycrystals With Self-Consistent Scheme
,”
ASME Eng. Mater. Technol.
,
132
(
1
), p.
011008
.10.1115/1.3184036
27.
Germain
,
P.
,
Nguyen
,
Q. S.
, and
Suquet
,
P.
,
1983
, “
Continuum Thermodynamics
,”
ASME J. Appl. Mech.
,
105
, pp.
1010
1020
.10.1115/1.3167184
28.
Ju
,
J. W.
, and
Sun
,
L. Z.
,
1999
, “
A Novel Formulation for the Exterior Point Eshelby's Tensor of an Ellipsoidal Inclusion
,”
ASME J. Appl. Mech.
,
66
, pp.
570
574
.10.1115/1.2791090
29.
Molinari
,
A.
,
Canova
,
G. R.
, and
Ahzi
,
S.
,
1987
, “
A Self-Consistent Approach of the Large Deformation Viscoplasticity
,”
Acta Metall.
,
35
, pp.
2983
2994
.
30.
Molinari
,
A., EL
Houdaigui
,
F.
, and
Toth
,
L. S.
,
2004
, “
Validation of Tangent Formulation for the Solution of the Non-Linear Eshelby Inclusion Problem
,”
Int. J. Plasticity
,
20
, pp.
291
307
.10.1016/S0749-6419(03)00038-X
31.
Radi
,
M.
, and
Abdul-Latif
,
A.
,
2009
, “
Grain Form Effect on the Biaxial Elasto-Inelastic Behavior of Polycrystals With a Self-Consistent Approach
,”
Phys. Procedia
,
1
, pp.
13
16
.10.1016/j.proeng.2009.06.005
32.
Radi
,
M.
, and
Abdul-Latif
,
A.
,
2012
, “
A Self-Consistent Approach Describing the Strain Induced Anisotropy: Case of Yield Surface Evolution
,”
Comput. Mater. Sci.
,
54
, pp.
356
369
.10.1016/j.commatsci.2011.10.007
33.
Hill
,
R.
,
1966
, “
Generalized Constitutive Relations for Incremental Deformation of Metal Crystals by Multislip
,”
J. Mech. Phys. Solids
,
4
, pp.
95
102
.10.1016/0022-5096(66)90040-8
34.
Mandel
,
J.
,
1965
, “
Une Généralisation de la Théorie de la Plasticité de W. T. Koiter
,”
Int. J. Solids Struct.
,
1
, pp.
273
295
.10.1016/0020-7683(65)90034-X
35.
Bui
,
H. D.
,
1969
, “
Étude de L’Évolution de la Frontière du Domaine Élastique avec L’écrouissage et Relations de Comportement Élastoplastique de Métaux Cubiques
,”
Ph.D. thesis
,
Paris, France
.
36.
Mandel
,
J.
,
1971
, “
Plasticité Classique et Viscoplasticité
,”
Cours CISM, Udine
, Vol. 97,
Springer-Verlag
,
New York
.
37.
Bui
,
H. D.
,
Dang Van
,
K.
, and
Stolz
,
C.
,
1982
, “
Relations Entre Grandeurs Microscopiques et Macroscopiques Pour un Solide Anélastique Ayant Des Zones Endommagées
,”
C.R. Acad. Sci., Ser. IIc: Chim.
,
294
, pp.
1155
1158
.
38.
Zhu
,
B.
,
Asaro
,
R.
, and
Krysl
,
P.
,
2006
, “
Effects of Grain Size Distribution on the Mechanical Response of Nanocrystalline Metals: Part II
,”
Acta Mater.
,
54
, pp.
3307
3320
.10.1016/j.actamat.2006.03.022
39.
Berbenni
,
S.
,
Favier
V.
, and
Berveiller
,
M.
,
2007
, “
Impact of the Grain Size Distribution on the Yield Stress of Heterogeneous Materials
,”
Int. J. Plasticity
,
23
, pp.
114
142
.10.1016/j.ijplas.2006.03.004
40.
Ramtani
,
S.
,
Bui
,
H. Q.
, and
Dirras
,
G.
,
2009
, “
A Revisited Generalized Self-Consistent Polycrystal Model Following an Incremental Small Strain Formulation and Including Grain-Size Distribution Effect
,”
Int. J. Eng. Sci.
,
47
, pp.
537
553
.10.1016/j.ijengsci.2008.09.005
41.
Abdul-Latif
,
A.
, and
Chadli
,
M.
,
2007
, “
Modeling of the Heterogeneous Damage Evolution at the Granular Scale in Polycrystals Under Complex Cyclic Loadings
,”
Int. J. Damage Mechanics
,
16
, pp.
133
158
.10.1177/1056789506064937
42.
Abdul-Latif
,
A.
,
2004
, “
Pertinence of the Grains Aggregate Type on the Self-Consistent Model Response
,”
Int. J. Solids Struct.
,
41
, pp.
305
322
.10.1016/j.ijsolstr.2003.09.014
You do not currently have access to this content.