A long-bar apparatus for subjecting relatively small samples to stress-wave loading has been devised for failure characterization. A methodology based on digital image correlation (DIC) used in conjunction with ultra high-speed photography and a long-bar impactor has been developed for determining dynamic crack initiation stress intensity factor (SIF) (KI-inid), as well as SIFs for a rapidly growing crack (KId) during high-strain rate events. By altering the material of the pulse shaper, a range of strain rates has been attained. Commercial grade PMMA was first used to calibrate the device, and then dynamic fracture characterization was performed for the first time on PMMA-based bone cement (BC). Despite several key differences, the two materials performed similarly during quasi-static fracture tests; however, under dynamic loading conditions, bone cement exhibited significantly lower crack initiation SIF (KI-inid), lower dynamic SIFs (KId), and higher crack tip velocities for three different dynamic loading rates (K·=6.5-24×104MPams-1).

References

1.
Charnley
,
J.
,
1960
, “
Anchorage of the Femoral Head Prosthesis to the Shaft of the Femur
,”
J. Bone Jt. Surg., Br. Vol.
,
42
(
1
), pp.
28
30
.
2.
Stanczyk
,
M.
,
2005
, “
Study on Modelling of PMMA Bone Cement Polymerisation
,”
J. Biomech.
,
38
(
7
), pp.
1397
1403
.10.1016/j.jbiomech.2004.06.021
3.
Lewis
,
G.
,
1999
, “
Effect of Mixing Method and Storage Temperature of Cement Constituents on the Fatigue and Porosity of Acrylic Bone Cement
,”
J. Biomed. Mater. Res.
,
48
(
2
), pp.
143
149
.10.1002/(SICI)1097-4636(1999)48:2<143::AID-JBM8>3.0.CO;2-8
4.
Ramakrishna
,
S.
,
Mayer
,
J.
,
Wintermantel
,
E.
, and
Leong
,
K. W.
,
2001
, “
Biomedical Applications of Polymer-Composite Materials: A Review
,”
Compos. Sci. Technol.
,
61
(
9
), pp.
1189
1224
.10.1016/S0266-3538(00)00241-4
5.
Chu
,
K. T.
,
Oshida
,
Y.
,
Hancock
,
E. B.
,
Kowolik
,
M. J.
,
Barco
,
T.
, and
Zunt
,
S. L.
,
2004
, “
Hydroxyapatite/PMMA Composites as Bone Cements
,”
Biomed. Mater. Eng.
,
14
(
1
), pp.
87
105
.
6.
Jasty
,
M.
,
Maloney
,
W. J.
,
Bragdon
,
C. R.
,
Oconnor
,
D. O.
,
Haire
,
T.
, and
Harris
,
W. H.
,
1991
, “
The Initiation of Failure in Cemented Femoral Components of Hip Arthroplasties
,”
J. Bone Jt. Surg., Br. Vol.
,
73
(
4
), pp.
551
558
.
7.
Topoleski
,
L. D. T.
,
Ducheyne
,
P.
, and
Cuckler
,
J. M.
,
1990
, “
A Fractographic Analysis of In Vivo Poly(methyl methacrylate) Bone Cement Failure Mechanisms
,”
J. Biomed. Mater. Res.
,
24
(
2
), pp.
135
154
.10.1002/jbm.820240202
8.
Jasty
,
M.
,
Davies
,
J. P.
,
Oconnor
,
D. O.
,
Burke
,
D. W.
,
Harrigan
,
T. P.
, and
Harris
,
W. H.
,
1990
, “
Porosity of Various Preparations of Acrylic Bone Cements
,”
Clin. Orthop. and Relat. Res.
,
259
, pp.
122
129
.10.1097/00003086-199010000-00018
9.
Buckley
,
P. J.
,
Orr
,
J. F.
,
Revie
,
I. C.
,
Breusch
,
S. J.
, and
Dunne
,
N. J.
,
2003
, “
Fracture Characteristics of Acrylic Bone Cement-Bone Composites
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
217
(
H6
), pp.
419
427
.10.1243/09544110360729063
10.
Ishihara
,
S.
,
Goshima
,
T.
,
Kanekasu
,
K.
, and
McEvily
,
A. J.
,
2002
, “
The Static and Cyclic Strength of a Bone-Cement Bond
,”
J. Mater. Sci. Mater. Med.
,
13
(
5
), pp.
449
455
.10.1023/A:1014785714533
11.
Vallo
,
C. I.
,
Cuadrado
,
T. R.
, and
Frontini
,
P. M.
,
1997
, “
Mechanical and Fracture Behaviour Evaluation of Commercial Acrylic Bone Cements
,”
Polym. Int.
,
43
(
3
), pp.
260
268
.10.1002/(SICI)1097-0126(199707)43:3<260::AID-PI771>3.0.CO;2-Q
12.
Baleani
,
M.
, and
Viceconti
,
M.
,
2011
, “
The Effect of Adding 10% of Barium Sulphate Radiopacifier on the Mechanical Behaviour of Acrylic Bone Cement
,”
Fatigue Fract. Eng. Mater. Struct.
,
34
(
5
), pp.
374
382
.10.1111/j.1460-2695.2010.01535.x
13.
Johnson
,
J. A.
, and
Jones
,
D. W.
,
1994
, “
The Mechanical Properties of PMMA and Its Copolymers With Ethyl Methacrylate and Butyl Methacrylate
,”
J. Mater. Sci.
,
29
(
4
), pp.
870
876
.10.1007/BF00351404
14.
Rittel
,
D.
, and
Maigre
,
H.
,
1996
, “
An Investigation of Dynamic Crack Initiation in PMMA
,”
Mech. Mater.
,
23
(
3
), pp.
229
239
.10.1016/0167-6636(96)00014-2
15.
Weerasooriya
,
T.
,
Moy
,
P.
, and
Casem
D.
,
2006
, “
Fracture Toughness for PMMA as a Function of Loading Rate
,”
Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, St. Louis, MO, June 4–7
.
16.
Wada
,
H.
,
1992
, “
Determination of Dynamic Fracture-Toughness for PMMA
,”
Eng. Fract. Mech.
,
41
(
6
), pp.
821
831
.10.1016/0013-7944(92)90234-6
17.
Wada
,
H.
,
Seika
,
M.
,
Calder
,
C. A.
, and
Kennedy
,
T. C.
,
1993
, “
Measurement of Impact Fracture Toughness for PMMA With Single-Point Bending Test Using an Air Gun
,”
Eng. Fract. Mech.
,
46
(
4
), pp.
715
719
.10.1016/0013-7944(93)90178-U
18.
Nam
,
H. W.
,
Aggag
,
G. A.
,
Takahashi
,
K.
, and
Han
,
K. S.
,
2000
, “
The Dynamic Behavior of Metal-Matrix Composites Under Low-Velocity Impact
,”
Compos. Sci. Technol.
,
60
(
6
), pp.
817
823
.10.1016/S0266-3538(99)00191-8
19.
Martins
,
C. E.
,
Irfan
,
M. A.
, and
Prakash
,
V.
,
2007
, “
Dynamic Fracture of Linear Medium Density Polyethylene Under Impact Loading Conditions
,”
Mater. Sci. Eng., A
,
465
(
1-2
), pp.
211
222
.10.1016/j.msea.2007.02.010
20.
Weisbrod
,
G.
, and
Rittel
,
D.
,
2000
, “
A Method for Dynamic Fracture Toughness Determination Using Short Beams
,”
Int. J. Fract.
,
104
(
1
), pp.
89
103
.10.1023/A:1007673528573
21.
Dai
,
F.
,
Chen
,
R.
,
Iqbal
,
M. J.
, and
Xia
,
K.
,
2010
, “
Dynamic Cracked Chevron Notched Brazilian Disc Method for Measuring Rock Fracture Parameters
,”
Int. J. Rock Mech. Min. Sci.
,
47
(
4
), pp.
606
613
.10.1016/j.ijrmms.2010.04.002
22.
Dong
,
S. M.
,
Wang
,
Y.
, and
Xia
,
Y. M.
,
2006
, “
A Finite Element Analysis for Using Brazilian Disk in Split Hopkinson Pressure Bar to Investigate Dynamic Fracture Behavior of Brittle Polymer Materials
,”
Polym. Test.
,
25
(
7
), pp.
943
952
.10.1016/j.polymertesting.2006.06.003
23.
Dai
,
F.
,
Chen
,
R.
, and
Xia
,
K.
,
2010
, “
A Semi-Circular Bend Technique for Determining Dynamic Fracture Toughness
,”
Exp. Mech.
,
50
(
6
), pp.
783
791
.10.1007/s11340-009-9273-2
24.
Wang
,
Q. Z.
,
Feng
,
F.
,
Ni
,
M.
, and
Gou
,
X. P.
,
2011
, “
Measurement of Mode I and Mode II Rock Dynamic Fracture Toughness With Cracked Straight Through Flattened Brazilian Disc Impacted by Split Hopkinson Pressure Bar
,”
Eng. Fract. Mech.
,
78
(
12
), pp.
2455
2469
.10.1016/j.engfracmech.2011.06.004
25.
Shukla
,
A.
,
Parameswaran
,
V.
,
Du
,
Y.
, and
Evora
,
V.
,
2006
, “
Dynamic Crack Initiation and Propagation in Nanocomposite Materials
,”
Rev. Adv. Mater. Sci.
,
13
(
1
), pp.
47
58
.
26.
Lee
,
D.
,
Tippur
,
H.
,
Kirugulige
,
M.
, and
Bogert
,
P.
,
2009
, “
Experimental Study of Dynamic Crack Growth in Unidirectional Graphite/Epoxy Composites Using Digital Image Correlation Method and High-Speed Photography
,”
J. Compos. Mater.
,
43
(
19
), pp.
2081
2108
.10.1177/0021998309342139
27.
Baleani
,
M.
,
Cristofolini
,
L.
,
Minari
,
C.
, and
Toni
,
A.
,
2003
, “
Fatigue Strength of PMMA Bone Cement Mixed With Gentamicin and Barium Sulphate vs Pure PMMA
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
217
(
H1
), pp.
9
12
.10.1243/095441103762597683
28.
Nishioka
,
T.
, and
Atluri
,
S. N.
,
1983
, “
Path Independent Integrals, Energy Release Rates, and General Solutions of Near-Tip Fields in Mixed-Mode Dynamic Fracture Mechanics
,”
Eng. Fract. Mech.
,
18
(
1
), pp.
1
22
.10.1016/0013-7944(83)90091-7
29.
Rousseau
,
C. E.
, and
Tippur
,
H. V.
,
2001
, “
Influence of Elastic Gradient Profiles on Dynamically Loaded Functionally Graded Materials: Cracks Along the Gradient
,”
Int. J. Solids Struct.
,
38
(
44-45
), pp.
7839
7856
.10.1016/S0020-7683(01)00127-5
30.
Plangsangmas
,
L.
,
Mecholsky
,
J. J.
, and
Brennan
,
A. B.
,
1999
, “
Determination of Fracture Toughness of Epoxy Using Fractography
,”
J. Appl. Polym. Sci.
,
72
(
2
), pp.
257
268
.10.1002/(SICI)1097-4628(19990411)72:2<257::AID-APP11>3.0.CO;2-M
You do not currently have access to this content.