Abstract

In this investigation, IN625 alloy samples were processed by the directed energy deposition (DED) approach under various metal deposition strategies such as substrate preheating, interlayer dwell and with combined substrate preheating, interlayer dwell, as well as postheat treatment. The processed sample’s microstructural characteristics, residual stress, microhardness, and tensile properties are assessed in comparison to the manufacturing strategies. Rapid heat dissipation caused finer microstructure near the substrate. There is a growth of columnar grain structure epitaxially in the build direction. The progressive microstructure change seen in the build direction across the cross section was due to the gradual rise of heat accumulation between subsequent layers. The interdendritic zones contained Laves phases. Laves phases have a high Nb, Mo, as well as Si content, according to the energy-dispersive spectroscope (EDS) spectrum. The field emission scanning microscopy (FESEM) microstructural morphology of the deposited samples after their postheat treatment has shown a new microstructure with the combination of equiaxed (recrystallized) and columnar dendritic structure with the reconstruction of columnar dendritic solidification microstructure into equiaxed grains. Heat treatment caused the Laves phases to dissolve in the matrix of IN625 alloy, which led to the precipitation of nanometric γ″ phases. The deposition strategies with substrate preheating significantly decreased the residual stress with moderately improved mechanical properties. The combination of substrate preheating, interlayer dwell, and postheat treatment has shown an outstanding reduction of residual stress along with a remarkable improvement in tensile strength with the retainment of an equivalent ductility compared with other strategies.

References

1.
Yang
,
J.
,
Hawkins
,
L.
,
Song
,
M.
,
He
,
L.
,
Bachhav
,
M.
,
Pan
,
Q.
,
Shao
,
L.
,
Schwen
,
D.
, and
Lou
,
X.
,
2022
, “
Compositionally Graded Specimen Made by Laser Additive Manufacturing as a High-Throughput Method to Study Radiation Damages and Irradiation-Assisted Stress Corrosion Cracking
,”
J. Nucl. Mater.
,
560
, p.
153493
.
2.
Gradl
,
P.
,
Tinker
,
D. C.
,
Park
,
A.
,
Mireles
,
O. R.
,
Garcia
,
M.
,
Wilkerson
,
R.
, and
Mckinney
,
C.
,
2022
, “
Robust Metal Additive Manufacturing Process Selection and Development for Aerospace Components
,”
J. Mater. Eng. Perform.
,
31
(
8
), pp.
6013
6044
.
3.
Lamichhane
,
T. N.
,
Sethuraman
,
L.
,
Dalagan
,
A.
,
Wang
,
H.
,
Keller
,
J.
, and
Paranthaman
,
M. P.
,
2020
, “
Additive Manufacturing of Soft Magnets for Electrical Machines—A Review
,”
Mater Today Phys.
,
15
, p.
100255
.
4.
Tiismus
,
H.
,
Kallaste
,
A.
,
Vaimann
,
T.
, and
Rassõlkin
,
A.
,
2022
, “
State of the Art of Additively Manufactured Electromagnetic Materials for Topology Optimized Electrical Machines
,”
Addit. Manuf.
,
55
, p.
102778
.
5.
Divakaran
,
N.
,
Das
,
J. P.
,
Ajay Kumar
,
P. V.
,
Mohanty
,
S.
,
Ramadoss
,
A.
, and
Nayak
,
S. K.
,
2022
, “
Comprehensive Review on Various Additive Manufacturing Techniques and Its Implementation in Electronic Devices
,”
J. Manuf. Syst.
,
62
, pp.
477
502
.
6.
Jiménez
,
A.
,
Bidare
,
P.
,
Hassanin
,
H.
,
Tarlochan
,
F.
,
Dimov
,
S.
, and
Essa
,
K.
,
2021
, “
Powder-Based Laser Hybrid Additive Manufacturing of Metals: A Review
,”
Int. J. Adv. Manuf. Technol.
,
114
(
1–2
), pp.
63
96
.
7.
Bandyopadhyay
,
A.
, and
Traxel
,
K. D.
,
2018
, “
Invited Review Article: Metal-Additive Manufacturing—Modeling Strategies for Application-Optimized Designs
,”
Addit. Manuf.
,
22
, pp.
758
774
.
8.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
9.
Nguyen
,
H. D.
,
Pramanik
,
A.
,
Basak
,
A. K.
,
Dong
,
Y.
,
Prakash
,
C.
,
Debnath
,
S.
,
Shankar
,
S.
,
Jawahir
,
I. S.
,
Dixit
,
S.
, and
Buddhi
,
D.
,
2022
, “
A Critical Review on Additive Manufacturing of Ti-6Al-4 V Alloy: Microstructure and Mechanical Properties
,”
J. Mater. Res. Technol.
,
18
, pp.
4641
4661
.
10.
Anderson
,
R.
,
Terrell
,
J.
,
Schneider
,
J.
,
Thompson
,
S.
, and
Gradl
,
P.
,
2019
, “
Characteristics of Bi-Metallic Interfaces Formed During Direct Energy Deposition Additive Manufacturing Processing
,”
Metall. Mater. Trans. B
,
50
(
4
), pp.
1921
1930
.
11.
Costa
,
L.
, and
Vilar
,
R.
,
2009
, “
Laser Powder Deposition
,”
Rapid Prototyp. J.
,
15
(
4
), pp.
264
279
.
12.
Ganesh, P., Kaul, R., Paul, C. P., Pragya, Tiwari, Rai, S. K., Prasad, R. C., and Kukreja, L. M., 2010, “Fatigue and Fracture Toughness Characteristics of Laser Rapid Manufactured Inconel 625 Structures,”
Mater. Sci. Eng.: A
257
, pp.
179
186
.
13.
Marleen
,
R.
,
Gert
,
M.
,
Myrjam
,
M.
, and
Willy
,
H.
,
2012
, “
Laser Metal Deposition of Inconel 625: Microstructure and Mechanical Properties
,”
J. Laser Appl.
,
24
(
5
), p.
052007
.
14.
Zhang
,
K.
,
Wang
,
S.
,
Liu
,
W.
, and
Long
,
R.
,
2014
, “
Effects of Substrate Preheating on the Thin-Wall Part Built by Laser Metal Deposition Shaping
,”
Appl. Surf. Sci.
,
317
, pp.
839
855
.
15.
Shim
,
D. S.
,
Baek
,
G. Y.
, and
Lee
,
E. M.
,
2017
, “
Effect of Substrate Preheating by Induction Heater on Direct Energy Deposition of AISI M4 Powder
,”
Mater. Sci. Eng. A
,
682
, pp.
550
562
.
16.
Bass
,
L.
,
Milner
,
J.
,
Gnäupel-Herold
,
T.
, and
Moylan
,
S.
,
2018
, “
Residual Stress in Additive Manufactured Nickel Alloy 625 Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061004
.
17.
Shamsaei
,
N.
,
Yadollahi
,
A.
,
Bian
,
L.
, and
Thompson
,
S. M.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control
,”
Addit. Manuf.
,
8
, pp.
12
35
.
18.
Farshidianfar
,
M. H.
,
Khodabakhshi
,
F.
,
Khajepour
,
A.
, and
Gerlich
,
A. P.
,
2021
, “
Closed-Loop Control of Microstructure and Mechanical Properties in Additive Manufacturing by Directed Energy Deposition
,”
Mater. Sci. Eng. A
,
803
, p.
140483
.
19.
Yadollahi
,
A.
,
Shamsaei
,
N.
,
Thompson
,
S. M.
, and
Seely
,
D. W.
,
2015
, “
Effects of Process Time Interval and Heat Treatment on the Mechanical and Microstructural Properties of Direct Laser Deposited 316L Stainless Steel
,”
Mater. Sci. Eng. A
,
644
, pp.
171
183
.
20.
Zhao
,
X.
,
Dong
,
S.
,
Yan
,
S.
,
Liu
,
X.
,
Liu
,
Y.
,
Xia
,
D.
,
Lv
,
Y.
,
He
,
P.
,
Xu
,
B.
, and
Han
,
H.
,
2020
, “
The Effect of Different Scanning Strategies on Microstructural Evolution to 24CrNiMo Alloy Steel During Direct Laser Deposition
,”
Mater. Sci. Eng. A
,
771
, p.
138557
.
21.
Hu
,
Y. L.
,
Lin
,
X.
,
Lu
,
X. F.
,
Zhang
,
S. Y.
,
Yang
,
H. O.
,
Wei
,
L.
, and
Huang
,
W. D.
,
2018
, “
Evolution of Solidification Microstructure and Dynamic Recrystallisation of Inconel 625 During Laser Solid Forming Process
,”
J. Mater. Sci.
,
53
(
22
), pp.
15650
15666
.
22.
Hu
,
Y. L.
,
Lin
,
X.
,
Yu
,
X. B.
,
Xu
,
J. J.
,
Lei
,
M.
, and
Huang
,
W. D.
,
2017
, “
Effect of Ti Addition on Cracking and Microhardness of Inconel 625 During the Laser Solid Forming Processing
,”
J. Alloys Compd.
,
711
, pp.
267
277
.
23.
Sui
,
S.
,
Chen
,
J.
,
Fan
,
E.
,
Yang
,
H.
,
Lin
,
X.
, and
Huang
,
W.
,
2017
, “
The Influence of Laves Phases on the High-Cycle Fatigue Behavior of Laser Additive Manufactured Inconel 718
,”
Mater. Sci. Eng. A
,
695
, pp.
6
13
.
24.
Poulin
,
J. R.
,
Brailovski
,
V.
, and
Terriault
,
P.
,
2018
, “
Long Fatigue Crack Propagation Behavior of Inconel 625 Processed by Laser Powder bed Fusion: Influence of Build Orientation and Post-Processing Conditions
,”
Int. J. Fatigue
,
116
, pp.
634
647
.
25.
Wang
,
Z.
,
Denlinger
,
E.
,
Michaleris
,
P.
,
Stoica
,
A. D.
,
Ma
,
D.
, and
Beese
,
A. M.
,
2017
, “
Residual Stress Mapping in Inconel 625 Fabricated Through Additive Manufacturing: Method for Neutron Diffraction Measurements to Validate Thermomechanical Model Predictions
,”
Mater. Des.
,
113
, pp.
169
177
.
26.
Hu
,
Y.
,
Lin
,
X.
,
Li
,
Y.
,
Zhang
,
S.
,
Zhang
,
Q.
,
Chen
,
W.
,
Li
,
W.
, and
Huang
,
W.
,
2021
, “
Influence of Heat Treatments on the Microstructure and Mechanical Properties of Inconel 625 Fabricated by Directed Energy Deposition
,”
Mater. Sci. Eng. A
,
817
, p.
141309
.
27.
Xu
,
F.
,
Lv
,
Y.
,
Liu
,
Y.
,
Xu
,
B.
, and
He
,
P.
,
2013
, “
Effect of Heat Treatment on Microstructure and Mechanical Properties of Inconel 625 Alloy Fabricated by Pulsed Plasma arc Deposition
,”
Phys. Procedia
,
50
, pp.
48
54
.
28.
Marchese
,
G.
,
Lorusso
,
M.
,
Parizia
,
S.
,
Bassini
,
E.
,
Lee
,
J.-W.
,
Calignano
,
F.
,
Manfredi
,
D.
, et al.
,
2018
, “
Influence of Heat Treatments on Microstructure Evolution and Mechanical Properties of Inconel 625 Processed by Laser Powder Bed Fusion
,”
Mater. Sci. Eng. A
,
729
, pp.
64
75
.
29.
Hu
,
Y. L.
,
Lin
,
X.
,
Li
,
Y. L.
,
Wang
,
J.
,
Zhang
,
S. Y.
,
Lu
,
X. F.
, and
Huang
,
W. D.
,
2019
, “
Effect of Heat Treatment on the Microstructural Evolution and Mechanical Properties of GH4099 Additive-Manufactured by Directed Energy Deposition
,”
J. Alloys Compd.
,
800
, pp.
163
173
.
30.
Chen
,
L.
,
Sun
,
Y.
,
Li
,
L.
, and
Ren
,
X.
,
2020
, “
Microstructural Evolution and Mechanical Properties of Selective Laser Melted a Nickel-Based Superalloy After Post Treatment
,”
Mater. Sci. Eng. A
,
792
, p.
139649
.
31.
Oladijo
,
O. P.
,
Collieus
,
L. L.
,
Obadele
,
B. A.
, and
Akinlabi
,
E. T.
,
2021
, “
Correlation Between Residual Stresses and the Tribological Behaviour of Inconel 625 Coatings
,”
Surf. Coat. Technol.
,
419
, p.
127288
.
32.
Kiani
,
P.
,
Dupuy
,
A. D.
,
Ma
,
K.
, and
Schoenung
,
J. M.
,
2020
, “
Directed Energy Deposition of AlSi10Mg: Single Track Nonscalability and Bulk Properties
,”
Mater. Des.
,
194
, p.
108847
.
33.
Dinda
,
G. P.
,
Dasgupta
,
A. K.
, and
Mazumder
,
J.
,
2009
, “
Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability
,”
Mater. Sci. Eng. A
,
509
(
1–2
), pp.
98
104
.
34.
Guévenoux
,
C.
,
Hallais
,
S.
,
Charles
,
A.
,
Charkaluk
,
E.
, and
Constantinescu
,
A.
,
2020
, “
Influence of Interlayer Dwell Time on the Microstructure of Inconel 718 Laser Cladded Components
,”
Opt. Laser Technol.
,
128
, p.
106218
.
35.
Brandl
,
E.
,
Michailov
,
V.
,
Viehweger
,
B.
, and
Leyens
,
C.
,
2011
, “
Deposition of Ti–6Al–4 V Using Laser and Wire, Part II: Hardness and Dimensions of Single Beads
,”
Surf. Coat. Technol.
,
206
(
6
), pp.
1130
1141
.
36.
Zheng
,
B.
,
Zhou
,
Y.
,
Smugeresky
,
J. E.
,
Schoenung
,
J. M.
, and
Lavernia
,
E. J.
,
2008
, “
Thermal Behavior and Microstructural Evolution During Laser Deposition With Laser-Engineered Net Shaping: Part I. Numerical Calculations
,”
Metall. Mater. Trans. A
,
39
(
9
), pp.
2228
2236
.
37.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
38.
Wang
,
X.
,
Carter
,
L. N.
,
Pang
,
B.
,
Attallah
,
M. M.
, and
Loretto
,
M. H.
,
2017
, “
Microstructure and Yield Strength of SLM-Fabricated CM247LC Ni-Superalloy
,”
Acta Mater.
,
128
, pp.
87
95
.
39.
Parizia
,
S.
,
Marchese
,
G.
,
Rashidi
,
M.
,
Lorusso
,
M.
,
Hryha
,
E.
,
Manfredi
,
D.
, and
Biamino
,
S.
,
2020
, “
Effect of Heat Treatment on Microstructure and Oxidation Properties of Inconel 625 Processed by LPBF
,”
J. Alloys Compd.
,
846
, p.
156418
.
40.
Shankar
,
V.
,
Bhanu Sankara Rao
,
K.
, and
Mannan
,
S. L.
,
2001
, “
Microstructure and Mechanical Properties of Inconel 625 Superalloy
,”
J. Nucl. Mater.
,
288
(
2–3
), pp.
222
232
.
41.
Yeni
,
C.
, and
Koçak
,
M.
,
2008
, “
Fracture Analysis of Laser Beam Welded Superalloys Inconel 718 and 625 Using the FITNET Procedure
,”
Int. J. Press. Vessel. Pip.
,
85
(
8
), pp.
532
539
.
42.
Tanvir
,
A. N. M.
,
Ahsan
,
M. R. U.
,
Ji
,
C.
,
Hawkins
,
W.
,
Bates
,
B.
, and
Kim
,
D. B.
,
2019
, “
Heat Treatment Effects on Inconel 625 Components Fabricated by Wire + Arc Additive Manufacturing (WAAM)—Part 1: Microstructural Characterization
,”
Int. J. Adv. Manuf. Technol.
,
103
(
9–12
), pp.
3785
3798
.
43.
Kreitcberg
,
A.
,
Brailovski
,
V.
, and
Turenne
,
S.
,
2017
, “
Effect of Heat Treatment and Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Inconel 625 Alloy Processed by Laser Powder Bed Fusion
,”
Mater. Sci. Eng. A
,
689
, pp.
1
10
.
44.
Kreitcberg
,
A.
,
Brailovski
,
V.
, and
Turenne
,
S.
,
2017
, “
Elevated Temperature Mechanical Behavior of IN625 Alloy Processed by Laser Powder-Bed Fusion
,”
Mater. Sci. Eng. A
,
700
, pp.
540
553
.
45.
Marchese
,
G.
,
Parizia
,
S.
,
Rashidi
,
M.
,
Saboori
,
A.
,
Manfredi
,
D.
,
Ugues
,
D.
,
Lombardi
,
M.
,
Hryha
,
E.
, and
Biamino
,
S.
,
2020
, “
The Role of Texturing and Microstructure Evolution on the Tensile Behavior of Heat-Treated Inconel 625 Produced via Laser Powder Bed Fusion
,”
Mater. Sci. Eng. A
,
769
, p.
138500
.
46.
Lee
,
J.
,
Terner
,
M.
,
Jun
,
S.
,
Hong
,
H. U.
,
Copin
,
E.
, and
Lours
,
P.
,
2020
, “
Heat Treatments Design for Superior High-Temperature Tensile Properties of Alloy 625 Produced by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
790
, p.
139720
.
47.
Bi
,
G.
,
Sun
,
C. N.
,
Chi Chen
,
H.
,
Ng
,
F. L.
, and
Ma
,
C. C. K.
,
2014
, “
Microstructure and Tensile Properties of Superalloy IN100 Fabricated by Micro-Laser Aided Additive Manufacturing
,”
Mater. Des.
,
60
, pp.
401
408
.
48.
Rai
,
S. K.
,
Kumar
,
A.
,
Shankar
,
V.
,
Jayakumar
,
T.
,
Rao
,
K. B. S.
, and
Raj
,
B.
,
2004
, “
Characterization of Microstructures in Inconel 625 Using X-Ray Diffraction Peak Broadening and Lattice Parameter Measurements
,”
Scr. Mater.
,
51
(
1
), pp.
59
63
.
49.
Yenusah
,
C. O.
,
Ji
,
Y.
,
Liu
,
Y.
,
Stone
,
T. W.
,
Horstemeyer
,
M. F.
,
Chen
,
L.-Q.
, and
Chen
,
L.
,
2021
, “
Three-Dimensional Phase-Field Simulation of γ″ Precipitation Kinetics in Inconel 625 During Heat Treatment
,”
Comput. Mater. Sci.
,
187
, p.
110123
.
50.
Sui
,
S.
,
Chen
,
J.
,
Li
,
Z.
,
Li
,
H.
,
Zhao
,
X.
, and
Tan
,
H.
,
2020
, “
Investigation of Dissolution Behavior of Laves Phase in Inconel 718 Fabricated by Laser Directed Energy Deposition
,”
Addit. Manuf.
,
32
, p.
101055
.
51.
Safarzade
,
A.
,
Sharifitabar
,
M.
, and
Shafiee Afarani
,
M.
,
2020
, “
Effects of Heat Treatment on Microstructure and Mechanical Properties of Inconel 625 Alloy Fabricated by Wire Arc Additive Manufacturing Process
,”
Trans. Nonferrous Met. Soc. China
,
30
(
11
), pp.
3016
3030
.
52.
Murr
,
L. E.
,
Martinez
,
E.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Machado
,
B. I.
,
Shindo
,
P. W.
,
Martinez
,
J. L.
, et al
,
2011
, “
Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting
,”
Metall. Mater. Trans. A
,
42
(
11
), pp.
3491
3508
.
53.
Lass
,
E. A.
,
Stoudt
,
M. R.
,
Williams
,
M. E.
,
Katz
,
M. B.
,
Levine
,
L. E.
,
Phan
,
T. Q.
,
Gnaeupel-Herold
,
T. H.
, and
Ng
,
D. S.
,
2017
, “
Formation of the Ni3Nb δ-Phase in Stress-Relieved Inconel 625 Produced via Laser Powder-Bed Fusion Additive Manufacturing
,”
Metall. Mater. Trans. A
,
48
(
11
), pp.
5547
5558
.
54.
Wang
,
J. F.
,
Sun
,
Q. J.
,
Wang
,
H.
,
Liu
,
J. P.
, and
Feng
,
J. C.
,
2016
, “
Effect of Location on Microstructure and Mechanical Properties of Additive Layer Manufactured Inconel 625 Using Gas Tungsten Arc Welding
,”
Mater. Sci. Eng. A
,
676
, pp.
395
405
.
55.
Liu
,
F.
,
Lin
,
X.
,
Yang
,
G.
,
Song
,
M.
,
Chen
,
J.
, and
Huang
,
W.
,
2011
, “
Microstructure and Residual Stress of Laser Rapid Formed Inconel 718 Nickel-Base Superalloy
,”
Opt. Laser Technol.
,
43
(
1
), pp.
208
213
.
56.
Xiong
,
J.
,
Lei
,
Y.
, and
Li
,
R.
,
2017
, “
Finite Element Analysis and Experimental Validation of Thermal Behavior for Thin-Walled Parts in GMAW-Based Additive Manufacturing With Various Substrate Preheating Temperatures
,”
Appl. Therm. Eng.
,
126
, pp.
43
52
.
57.
Moheimani
,
S. K.
,
Iuliano
,
L.
, and
Saboori
,
A.
,
2022
, “
The Role of Substrate Preheating on the Microstructure, Roughness, and Mechanical Performance of AISI 316L Produced by Directed Energy Deposition Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
119
(
11–12
), pp.
7159
7174
.
58.
Kistler
,
N. A.
,
Corbin
,
D. J.
,
Nassar
,
A. R.
,
Reutzel
,
E. W.
, and
Beese
,
A. M.
,
2019
, “
Effect of Processing Conditions on the Microstructure, Porosity, and Mechanical Properties of Ti-6Al-4 V Repair Fabricated by Directed Energy Deposition
,”
J. Mater. Process. Technol.
,
264
, pp.
172
181
.
59.
Baek
,
G. Y.
,
Lee
,
K. Y.
,
Park
,
S. H.
, and
Shim
,
D. S.
,
2017
, “
Effects of Substrate Preheating During Direct Energy Deposition on Microstructure, Hardness, Tensile Strength, and Notch Toughness
,”
Met. Mater. Int.
,
23
(
6
), pp.
1204
1215
.
You do not currently have access to this content.