Abstract

Utilizing waste materials like fly ash in the creation of lightweight magnesium metal matrix composites with a high strength-to-weight ratio is encouraged by the rising demand for in-expensive reinforcements. In the current study, friction stir processing (FSP) was employed to synthesize magnesium surface composites via incorporating hybrid reinforcement particles, including nano titanium carbide and fly ash. The synthesized composite material underwent examination through microscopic images of the stir zone and assessments of microhardness, tensile strength, compressive strength, electrical and thermal conductance, and wear behavior. The results revealed a notable refinement in grain size and a simultaneous improvement in mechanical properties. Notably, there was a substantial increase in wear resistance attributed to the increased hardness and uniform dispersion of hybrid reinforcements within the surface composite. The results demonstrate that the inclusion of reinforcements in magnesium-based alloy led to an enhancement in fracture toughness, mitigation of crack propagation, and an overall improvement in fracture resistance to catastrophic failure.

References

1.
Berlin
,
A.
,
Nguyen
,
T. C.
,
Worswick
,
M. J.
, and
Zhou
,
Y.
,
2011
, “
Metallurgical Analysis of Magnetic Pulse Welds of AZ31 Magnesium Alloy
,”
Sci. Technol. Weld. Joining
,
16
(
8
), pp.
728
734
.
2.
Hu
,
H.
,
Yu
,
A.
,
Li
,
N.
, and
Allison
,
J. E.
,
2003
, “
Potential Magnesium Alloys for High Temperature Die Cast Automotive Applications: A Review
,”
Mater. Manuf. Processes
,
18
(
5
), pp.
687
717
.
3.
Mahmoud
,
E. R. I.
,
Ikeuchi
,
K.
, and
Takahashi
,
M.
,
2008
, “
Fabrication of SiC Particle Reinforced Composite on Aluminium Surface by Friction Stir Processing
,”
Sci. Technol. Weld. Joining
,
13
(
7
), pp.
607
618
.
4.
Hosseinzadeh
,
A.
, and
Yapici
,
G. G.
,
2021
, “
On the High-Temperature Flow Response of Friction Stir Processed Magnesium Metal Matrix Composites
,”
ASME J. Eng. Mater. Technol.
,
143
(
1
), p.
011005
.
5.
Mosleh
,
N.
,
Rezadoust
,
A.
, and
Dariushi
,
S.
,
2020
, “
Determining Process-Window for Manufacturing of Continuous Carbon Fiber-Reinforced Composite Using 3D-Printing
,”
Mater. Manuf. Processes
,
36
(
Nov.
), pp.
1
10
.
6.
Wang
,
S.
,
Tang
,
Q.
,
Li
,
D.
,
Zou
,
J.
,
Zeng
,
X.
,
Ouyang
,
Q.
, and
Ding
,
W.
,
2014
, “
The Hot Workability of SiC p /2024 Al Composite by Stir Casting
,”
Mater. Manuf. Processes
,
30
(
Sept.
), pp.
1
7
.
7.
Amirkhanlou
,
S.
,
Jamaati
,
R.
,
Niroumand
,
B.
, and
Toroghinejad
,
M. R.
,
2011
, “
Manufacturing of High-Performance Al356/SiCp Composite by CAR Process
,”
Mater. Manuf. Processes
,
26
(
7
), pp.
902
907
.
8.
Sagar
,
P.
, and
Handa
,
A.
,
2020
, “
A Comprehensive Review of Recent Progress in Fabrication of Magnesium Base Composites by Friction Stir Processing Technique—A Review
,”
AIMS Mater. Sci.
,
7
(
5
), pp.
684
704
.
9.
Schneider
,
C.
,
Weinberger
,
T.
,
Inoue
,
J.
,
Koseki
,
T.
, and
Enzinger
,
N.
,
2011
, “
Characterisation of Interface of Steel/Magnesium FSW
,”
Sci. Technol. Weld. Joining
,
16
(
1
), pp.
100
107
.
10.
Shah
,
L.
,
Othman
,
N.
, and
Gerlich
,
A.
,
2017
, “
Review of Research Progress on Aluminium–Magnesium Dissimilar Friction Stir Welding
,”
Sci. Technol. Weld. Joining
,
23
(
Aug.
), pp.
1
15
.
11.
Singh
,
S.
, and
Pal
,
K.
,
2020
, “
Influence of Texture Evolution on Mechanical and Damping Properties of SiC/Li2ZrO3/Al Composite Through Friction Stir Processing
,”
ASME J. Eng. Mater. Technol.
,
142
(
2
), p.
021011
.
12.
Sagar
,
P.
, and
Handa
,
A.
,
2020
, “
Selection of Tool Transverse Speed Considering Trial Run Experimentations for AZ61/Tic Composite Developed via Friction Stir Processing Using Triangular Tool
,”
Mater. Today: Proc.
,
38
(
1
), pp.
198
203
.
13.
Sagar
,
P.
, and
Handa
,
A.
,
2021
, “
Prediction of Wear Resistance Model for Magnesium Metal Composite by Response Surface Methodology Using Central Composite Design
,”
World J. Eng.
,
18
(
2
), pp.
316
327
.
14.
Sagar
,
P.
,
Handa
,
A.
, and
Kumar
,
G.
,
2022
, “
Metallurgical, Mechanical and Tribological Behavior of Reinforced Magnesium-Based Composite Developed via Friction Stir Processing
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
236
(
4
), pp.
1440
1451
.
15.
Li
,
D.
, and
Lavender
,
C.
,
2015
, “
Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering
,”
ASME J. Eng. Mater. Technol.
,
137
(
3
), p. 031008.
16.
Manroo
,
S. A.
,
Khan
,
N. Z.
, and
Ahmad
,
B.
,
2022
, “
Study on Surface Modification and Fabrication of Surface Composites of Magnesium Alloys by Friction Stir Processing: A Review
,”
J. Eng. Appl. Sci.
,
69
(
1
), p.
25
.
17.
Sagar
,
P.
,
Handa
,
A.
,
Kumar
,
G.
,
Gupta
,
V.
,
Walia
,
R.
, and
Singla
,
S.
,
2022
, “
Nanocomposite Hydrogel Materials for Defective Cartilage Repair and Its Mechanical Tribological Behavior—A Review
,”
Paper Biomater.
,
7
(
3
), pp.
63
72
.
18.
Sagar
,
P.
,
Kumar
,
G.
, and
Handa
,
A.
,
2023
, “
Progressive Use of Nanocomposite Hydrogels Materials for Regeneration of Damaged Cartilage and Their Tribological Mechanical Properties
,”
Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst.
, p.
23977914231151490
.
19.
Handa
,
A.
, and
Chawla
,
V.
,
2015
, “
An Investigation on the Effect of Axial Pressures on the Mechanical Properties of Friction Welded Dissimilar Steels
,”
Adv. Mech. Eng.
,
6
(
Feb.
), p.
639378
.
20.
Handa
,
A.
, and
Chawla
,
A. V.
,
2015
, “
Evaluation of Tensile Strength and Fracture Behavior of Friction Welded Dissimilar Steels Under Different Rotational Speeds and Axial Pressures
,”
Sadhana
,
40
(
5
), pp.
1639
1655
.
21.
Handa
,
A.
, and
Chawla
,
V.
,
2014
, “
Investigation of Mechanical Properties of Friction-Welded AISI 304 With AISI 1021 Dissimilar Steels
,”
Int. J. Adv. Manuf. Technol.
,
75
(
9
), pp.
1493
1500
.
22.
Handa
,
A.
, and
Chawla
,
V.
,
2013
, “
Experimental Study of Mechanical Properties of Friction Welded AISI 1021 Steels
,”
Sadhana
,
38
(
6
), pp.
1407
1419
.
23.
Jalilvand
,
M. M.
, and
Mazaheri
,
Y.
,
2020
, “
Effect of Mono and Hybrid Ceramic Reinforcement Particles on the Tribological Behavior of the AZ31 Matrix Surface Composites Developed by Friction Stir Processing
,”
Ceram. Int.
,
46
(
12
), pp.
20345
20356
.
24.
Parray
,
M. R.
,
Khan
,
N. Z.
, and
Maqbool
,
A.
,
2021
, “
Fabrication and Characterization of Magnesium Based Surface Composites With Hybrid Reinforcements by Friction Stir Processing: A Review
,”
Mater. Today: Proc.
,
46
(
15
), pp.
6507
6512
.
25.
Patle
,
H.
,
Sunil
,
B. R.
, and
Dumpala
,
R.
,
2021
, “
Machining Characteristics, Wear and Corrosion Behavior of AZ91 Magnesium Alloy—Fly Ash Composites Produced by Friction Stir Processing
,”
Materialwiss. Werkstofftech.
,
52
(
1
), pp.
88
99
.
26.
Dinaharan
,
I.
, and
Akinlabi
,
E. T.
,
2018
, “
Low Cost Metal Matrix Composites Based on Aluminum, Magnesium and Copper Reinforced With Fly Ash Prepared Using Friction Stir Processing
,”
Compos. Commun.
,
9
(
3
), pp.
22
26
.
27.
Selvakumar
,
S.
,
Aneesh
,
S.
,
Rabi
,
J.
,
Mohammed
,
N.
, and
Babu
,
K.
,
2022
, “
Micro Thermal Behavior of Ti-Mg Composite Processed Through Friction Stir Processing
,”
Mater. Today: Proc.
,
80
(
2
), pp.
1162
1167
.
28.
Gawlik
,
M.
,
Wiese
,
B.
,
Welle
,
A.
,
Frutos
,
J. G.
,
Desharnais
,
V.
,
Harmuth
,
J.
,
Ebel
,
T.
, and
Willumeit
,
R.
,
2019
, “
Acetic Acid Etching of Mg-XGd Alloys
,”
Metals
,
9
(
Jan.
), p.
117
.
29.
Moustafa
,
E. B.
, and
Taha
,
M. A.
,
2020
, “
Preparation of High Strength Graphene Reinforced Cu-Based Nanocomposites via Mechanical Alloying Method: Microstructural, Mechanical and Electrical Properties
,”
Appl. Phys. A: Mater. Sci. Process.
,
126
(
3
), p.
220
.
30.
Thapliyal
,
S.
, and
Dwivedi
,
D. K.
,
2018
, “
Barium Titanate Reinforced Nickel Aluminium Bronze Surface Composite by Friction Stir Processing
,”
Mater. Sci. Technol.
,
34
(
3
), pp.
366
377
.
31.
De
,
P. S.
, and
Mishra
,
R. S.
,
2011
, “
Friction Stir Welding of Precipitation Strengthened Aluminium Alloys: Scope and Challenges
,”
Sci. Technol. Weld. Joining
,
16
(
4
), pp.
343
347
.
32.
Dangwal
,
S.
,
Edalati
,
K.
,
Valiev
,
R. Z.
, and
Langdon
,
T. G.
,
2023
, “
Breaks in the Hall-Petch Relationship After Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron
,”
Crystals
,
13
(
3
), p.
413
.
33.
Dadashpour
,
M.
,
Mostafapour
,
A.
,
Yeşildal
,
R.
, and
Rouhi
,
S.
,
2016
, “
Effect of Process Parameter on Mechanical Properties and Fracture Behavior of AZ91C/SiO2 Composite Fabricated by FSP
,”
Mater. Sci. Eng. A
,
655
(
7
), pp.
379
387
.
34.
Sudhagar
,
S.
, and
Gopal
,
P. M.
,
2022
, “
Investigation on Mechanical and Tribological Characteristics Cu/Si3N4 Surface Composite Developed Through Friction Stir Processing
,”
Silicon
,
14
(
8
), pp.
4207
4216
.
35.
Suganeswaran
,
K.
,
Parameshwaran
,
R.
,
Thangavel
,
P.
,
Nithyavathy
,
N.
, and
Sivasakthivel
,
T.
,
2019
, “
Investigations on Micro Hardness, Electrical and Thermal Conductivity of AA7075 Surface Hybrid Composites Produced Through Friction Stir Processing
,”
Mater. Res. Express
,
6
(
11
), p.
116548
.
36.
Rudajevová
,
A.
, and
Lukáč
,
P.
,
2000
,
Microstructural Investigation and Analysis
.
Wiley
37.
Mousavi
,
S. F.
,
Sharifi
,
H.
,
Tayebi
,
M.
,
Hamawandi
,
B.
, and
Behnamian
,
Y.
,
2022
, “
Thermal Cycles Behavior and Microstructure of AZ31/SiC Composite Prepared by Stir Casting
,”
Sci. Rep.
,
12
(
1
), p.
15191
.
38.
Taha
,
M. A.
, and
Zawrah
,
M. F.
,
2017
, “
Effect of Nano ZrO2 on Strengthening and Electrical Properties of Cu-Matrix Nanocomposites Prepared by Mechanical Alloying
,”
Ceram. Int.
,
43
(
15
), pp.
12698
12704
.
39.
Takata
,
N.
,
Lee
,
S. H.
, and
Tsuji
,
N.
,
2009
, “
Ultrafine Grained Copper Alloy Sheets Having Both High Strength and High Electric Conductivity
,”
Mater. Lett.
,
63
(
21
), pp.
1757
1760
.
40.
Naik
,
R. B.
,
Venkateswara Reddy
,
K.
,
Madhusudhan Reddy
,
G.
, and
Arockia Kumar
,
R.
,
2020
, “
Development of High Strength and High Electrical Conductivity Cu/Gr Composites Through Friction Stir Processing
,”
Mater. Lett.
,
265
(
8
), p.
127437
.
41.
Balaji
,
E.
, and
Sathiya Moorthy
,
R.
,
2022
, “
Investigation on Mechanical and Wear Properties of ZE43 Magnesium Composites Reinforced With Silicon Nitride by Friction Stir Processing
,”
Silicon
,
14
(
17
), pp.
11881
11890
.
42.
Sagar
,
P.
, and
Handa
,
A.
,
2023
, “
Enhanced Strength Ductility and Wear Resistance in a Friction Stir Processing Engineered AZ31B/TiC Magnesium-Based Nanocomposites
,”
Can. Metall. Q.
, pp.
1
19
.
43.
Sagar
,
P.
, and
Handa
,
A.
,
2023
, “
Exploring the Mechanical, Metallurgical, and Fracture Characteristics of Hybrid-Reinforced Magnesium Metal Matrix Composite Synthesized via Friction Stir Processing Route
,”
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
, p.
14644207231200640
.
You do not currently have access to this content.