A study was made to estimate the magnitudes of elastic stresses and elastic-plastic stresses and strains in sheet or foil laminar composites. Using a model tungsten/80Ni + 20Cr laminar composite and assuming cooling or heating through a temperature range of 80–2000 deg F (26.5–1093.5 deg C), calculated elastic stresses exceeded published or estimated strengths of the constituents. Elastic-plastic stress-strain solutions resulted in lower estimated stress levels but with the concomitant occurrence of sufficiently large strain ranges to suggest possible thermal fatigue problems. Limited experimental studies using tungsten/80Ni + 20Cr foil and sheet laminar composites, slowly cycled between 80 and 2000 deg F (26.5–1093.5 deg C) or rapidly cycled between 80 and 1600 deg F (26.5–871 deg C) produced varying degrees of observable structural damage in from 1 to 11 cycles depending upon temperature transition rate and laminae thickness; these particular results might not occur with other combinations of materials.

This content is only available via PDF.
You do not currently have access to this content.